ТНВД Лукас – типы и назначение

Электронная система управления ТНВД Lucas распределительного типа

Система EPIC (Electronically Programmed Injection Control) электронного регулирования топливоподачи дизелей разработа­на фирмой Lucas в конце 1970-х годов. В настоящее время система EPIC устанавливается на дизели автомобилей Citroen, Mercedes-Benz, Peugeot, Ford и ряд других.

Система EPIC применяется как в ди­зелях с разделёнными камерами сгорания, давление впрыскива­ния топлива в которых может достигать 350 кгс/см2, так и в дизелях с непосредственным впрыскиванием топлива с давлением до 1000 кгс/см2.

Основой системы является топливный насос Lucas типа DPC с внутренним кулачковым механизмом.

Рис. Общий вид ТНВД ЕPIC-80 фирмы Лукас:
1 – штуцер подвода топлива; 2 – сервопоршень регулирования угла опережения впрыскивания (УОВ); 3 – штуцер слива; 4 – седло шарикового клапана; 5 – электромагнит УОВ; 6 – болт-поводок кулачковой шайбы; 7 – электромагнит дренажа системы управления (СУ) ротором; 8 – электромагнит подачи СУ ротором; 9 – разъем; 10 – электромагнит прерывания топливоподачи (ТП); 11 – ротор; 12 – датчик осевого положения ротора; 13 – нагне­тательный штуцер; 14 – демпфирующий клапан; 15 – нагнетательный клапан; 16 – кулачковая шайба; 17 – средняя опо­ра; 18 – плунжеры; 19 – датчик углового положения вала; 20 – внешний шариковый подшипник; 21 – кольцо измерения частоты вала; 22 – внутреннее кольцо сферической опоры; 23 – роторно-лопастной топливоподкачивающий насос (ТПН); 24 – ролик кулачковой шайбы с толкателем; 25 – корпус привода; 26 – передний подшипник; 27 – приводной вал; 28 – адаптер регулировки УОВ; 29 – регулятор давления подкачки

Кор­пус ТНВД закрепляется на двигателе с помощью средних опор 17 и переднего адап­тера 28, допускающих поворот ТНВД вокруг оси для предварительной уста­новки УОВ. Приводной вал 27 на подшипниках 26 и 20 приводит во враще­ние роторно-лопастной топливоподкачивающий насос с четырьмя подпружиненными лопастями. Они обеспечивают при пусковой частоте коленчатого вала 180 об/мин давление подкачки 3 кгс/см2, а свыше 500 об/мин – 8…9 кгс/см2. Вал несет перфорированное кольцо 21 для измерения датчиком 19 положения вала. Вал заканчива­йся клиновыми захватами, приводящими во вращение сносно расположенный по длине насоса ротор 11. Ротор снабжен прецизионными отверстиями под два или четыре плунжера 18 и пазами под роликовые толкатели 24.

Рис. Механизм привода и регулирования цикловой подачи:
18 – плунжеры; 24 – ролик кулачковой шайбы с толкателем; 27 – приводной вал; 30 – клиновые захваты; 31 – выступы; 32 – скос на толкателе

Их ролики толкателей обкатывают внутренний профиль кулачковой шайбы 16, которая заставляет их сходиться для нагнета­ния топлива. Ротор снабжен тремя продольными разгружающими пазами. Кроме того, ротор имеет продольный паз-распределитель (на рис. «Общий вид ТНВД ЕPIC-80 фирмы Лукас» показан пунктиром). При схождении плунжеров распределитель сообщается с одним из нагнетательных клапанов 15, а при расхождении – с наполнительными каналами втулки ротора. В верхней части ТНВД располагаются электромагниты управления 5, 7, 10 и механизм 2 поворота кулачковой шайбы для изменения УОВ.

Высокое давление в ТНВД EPIC создаётся с помощью четырёх (двух) радиально расположенных плунжеров, которые вращаются вместе с роликами и толкателями (башмаками) внутри кулачковой обоймы. Регулирование подачи осуществляется посредством радиального смещения роликов по наклонной опорной поверхности толкателей при осевом переме­щении ротора.

Ротор 9, в держателе которого установлены плунже­ры высокого давления 2, находится под усилием пружины 10, которая в стационарном положении держит ротор на упоре, когда ход плунжеров имеет максимальную величину и обеспечивает максимальную подачу топлива (рис. «Положение ротора при максимальной и минимальной подачах топлива» А).

При работе двигателя камера давления на конце ро­тора заполняется топливом, под давлением которого ротор перемещается, преодолевая сопротивление пружины, в сторону уменьшения подачи вплоть до достижения мини­мальной подачи (рис. «Положение ротора при максимальной и минимальной подачах топлива» В).

Рис. Положение ротора при максимальной и минимальной подачах топлива:
А – максимальная подача топлива; В – минимальная подача топлива; 1 – индуктивный датчик; 2 – упор; 3 – ротор; 4 – кольцо с внутренним кулачковым профилем

Механизм управления осевым положением ротора (т.е. цикловой подачи) показан на рисунке. Топливо через входной штуцер поступает к ТПН, давление подкачки стабилизи­руется регулятором 29, и поступает к шариковому клапану электромагнита 8 подачи СУ положением ротора. При его открытии топливо поступает в торцевую полость ротора 37, повышая давление в ней. Сброс давления осуществляется шариковым клапаном электромагнитного клапана 7, топливо при этом сливается в корпус насоса и топливный бак через жиклер стабилизации положения ротора.

Читайте также:
Принцип работы микропроцессорной системы зажигания

Открытые электромагнитные клапаны 7 и 8 на короткое время попеременно закрываются по командам блока управления, обеспечивая необходимое давление у торца ротора. Во время впрыскивания топлива оба регулирующих клапана закрыты.

Относительным временем открытия того или и иного электромагнитного клапана (скважность включения) регулируется электронным блоком управления, получающим входные частотные сигналы от датчика Холла 19, расположенного в ТНВД.

Положение ротора определяет величину цикловой подачи, соответствующей также температуре топлива. Сигнал осевого положения ротора передается индуктивным датчиком 12 (рис. «Гидравлическая схема управления подачей топлива»), расположенным в торцевой полости ротора, в электронный блок управления, что обеспечивает межцикловую стабильность и точ­ность заданной (равномерной или индивидуальной) подачи по цилиндрам. При нормально отрегулированных форсунках неравномерность подачи по цилиндрам составляет 0,5 мм3 в интервале подач 10…50 мм.

На холостом ходу система EPIC обеспечивает индивидуальную подачу по цилиндрам, поэтому за один оборот вала ТНВД СУ подачей и положение ротора успевает перенастроиться для каждого ци­линдра. Время перемещения ротора от нулевой до максимальной подачи топлива составляет приблизительно 0,1 с, растягиваясь на несколько циклов впрыскивания в зависимости от частоты вращения коленчатого вала. Перемещение ротора осуществляется только в периоды между впрысками.

Датчик положения коленчатого вала с четырьмя метками (для 4 — цилиндрового дизеля) позволяет оператив­но диагностировать вырабатываемую каждым цилиндром мощность и кор­ректировать цикловую подачу, добиваясь баланса мощности по цилиндрам.

Для снижения пульсаций давления в канале дренажа имеется жиклер 36. Заданное давление и противодействие возвратной пружины между приводным валом и ротором, обусловливает его устойчивое положение.

Рис. Гидравлическая схема управления подачей топлива:
А – подкачка топлива; В – управление УОВ; С – управление положением ротора; D – низкое давление в ТНВД; E – нагнетание топлива; F – вход топлива в ТНВД; 1 – штуцер подвода топлива; 3 – штуцер слива; 5 – электромагнит УОВ; 7 – электромагнит дренажа системы управления (СУ) ротором; 8 – электромагнит подачи СУ ротором; 10 – электромагнит прерывания ТП; 12 – датчик осевого положения ротора; 13 – нагне­тательный штуцер; 23 – роторно-лопастной ТПН; 29 – регулятор давления подкачки; 33 – датчик положения сервопоршня; 34 – жиклер стабилизации УОВ; 35 – жиклер стабилизации сервопоршня от нагнетания топлива; 36 – жиклер стабилизации положения ротора; 37 – торцевая полость ротора

В рабочей области перемещений ротора 2,5 мм (при геометрическом 4 мм) обеспечивается строгая линейность между перемещением и цикловой пода­чей. Крайнее внутреннее положение ротора соответствует минимальной по­даче, а полностью ее отключает электромагнит 10, перекрывая под­вод топлива к плунжерам. Он используется для остановки дизеля и включен в противоугонную систему.

Изменение УОВ достигается разворотом кулачковой шайбы 16 с помощью сервопоршня 2. Его положение обусловлено балансом момен­та с шайбы, усилия пружины и разницы давлений топлива на сервопоршень.

Электронный блок управления распознает положение роликов внутри кулачковой шайбы 16 по отношению к ВМТ по сигналу от датчика частоты вращения коленчатого вала и от датчика 33 положения сервопоршня. Датчик положения сервопоршня посылает в электронный блок управления сигнал, который определяет точный угол опережения впрыскивания по отношению к ВМТ такта сжатия.

Давление управления УОВ (В) определяется балансом расходов топлива в гидроцилиндр: оно постоянно сбрасывается на слив в корпус через жиклер 34, но и периодически поступает через электромагнитный клапан 5. Таким образом, уровень давления в гидроцилин­дре и, следовательно, УОВ обусловливается относительным временем откры­вания электромагнитного клапана 5, определяемого блоком управления.

Основные сведения. 4.1 Топливный насос высокого давления с механическим управлением Lucas DPS

4.1 Топливный насос высокого давления с механическим управлением Lucas DPS

Общее устройство топливного насоса высокого давления Lucas DPC показано на рисунке 1.

1 – дифференциальный клапан; 2 – поршни пускового обогатителя; 3 – толкатель (башмак); 4 – пластина-ограничитель максимальной подачи; 5 – возвратная пружина; 6 – муфта регулятора; 7 – вал привода; 8 – обойма грузов регулятора; 9 – пружина холостого хода; 10 – рычаг регулятора; 11 – рабочая пружина; 12 – автомат опережения впрыска; 13 – рычаг управления; 14 – тяга; 15 – дозирующий клапан

Читайте также:
Постановка мотоцикла на учет без прав

Рисунок 1 – Схема продольного разреза топливного насоса высокого давления Lucas DPC

4.2 Топливный насос высокого давления с электронным управлением Lucas DPS

Система EPIC (Electronically Programmed Injection Control) электронного регулирования топливоподачи дизелей разработа­на фирмой Lucas в конце 1970-х годов. В настоящее время система EPIC устанавливается на дизели автомобилей Citroen, Mercedes-Benz, Peugeot, Ford и ряд других.

Система EPIC применяется как в ди­зелях с разделёнными камерами сгорания, давление впрыскива­ния топлива в которых может достигать 350 кгс/см 2 , так и в дизелях с непосредственным впрыскиванием топлива с давлением до 1000 кгс/см 2 .

Основой системы является топливный насос высокого давления Lucas типа DPC с внутренним кулачковым механизмом (рисунок 2).

1 – штуцер подвода топлива; 2 – сервопоршень регулирования угла опережения впрыскивания (УОВ); 3 – штуцер слива; 4 – седло шарикового клапана; 5 – электромагнит УОВ; 6 – болт-поводок кулачковой шайбы; 7 – электромагнит дренажа системы управления (СУ) ротором; 8 – электромагнит подачи СУ ротором; 9 – разъем; 10 – электромагнит прерывания топливоподачи (ТП); 11 – ротор; 12 – датчик осевого положения ротора; 13 – нагне­тательный штуцер; 14 – демпфирующий клапан; 15 – нагнетательный клапан; 16 – кулачковая шайба; 17 – средняя опо­ра; 18 – плунжеры; 19 – датчик углового положения вала; 20 – внешний шариковый подшипник; 21 – кольцо измерения частоты вала; 22 – внутреннее кольцо сферической опоры; 23 – роторно-лопастной топливоподкачивающий насос (ТПН); 24 – ролик кулачковой шайбы с толкателем; 25 – корпус привода; 26 – передний подшипник; 27 – приводной вал; 28 – адаптер регулировки УОВ; 29 – регулятор давления подкачки

Рисунок 2 – Топливный насос высокого давления Lucas типа DPC

Кор­пус насоса закрепляется на двигателе с помощью средних опор 17 и переднего адап­тера 28, допускающих поворот насоса вокруг оси для предварительной уста­новки угла опережения впрыска. Приводной вал 27 на подшипниках 26 и 20 приводит во враще­ние роторно-лопастной топливоподкачивающий насос с четырьмя подпружиненными лопастями. Они обеспечивают при пусковой частоте коленчатого вала 180 об/мин давление подкачки 3 кгс/см 2 , а свыше 500 об/мин – 8. 9 кгс/см 2 . Вал несет перфорированное кольцо 21 для измерения датчиком 19 положения вала. Вал заканчива­йся клиновыми захватами, приводящими во вращение сносно расположенный по длине насоса ротор 11. Ротор снабжен прецизионными отверстиями под два или четыре плунжера 18 и пазами под роликовые толкатели 24.

Высокое давление в насоса EPIC создаётся с помощью четырёх (двух) радиально расположенных плунжеров, которые вращаются вместе с роликами и толкателями (башмаками) внутри кулачковой обоймы. Регулирование подачи осуществляется посредством радиального смещения роликов по наклонной опорной поверхности толкателей при осевом переме­щении ротора.

Изменение угла опережения впрыска достигается разворотом кулачковой шайбы 16 с помощью сервопоршня 2. Его положение обусловлено балансом момен­та с шайбы, усилия пружины и разницы давлений топлива на сервопоршень.

Электронный блок управления распознает положение роликов внутри кулачковой шайбы по отношению к ВМТ по сигналу от датчика частоты вращения коленчатого вала и от датчика положения сервопоршня. Датчик положения сервопоршня посылает в электронный блок управления сигнал, который определяет точный угол опережения впрыскивания по отношению к ВМТ такта сжатия.

Дата добавления: 2015-03-03 ; просмотров: 2036 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Устройство системы питания автомобиля

Устройство топливного насоса высокого давления (ТНВД): виды топливных насосов высокого давления, и принцип работы топливного насоса

Топливный насос высокого давления имеющий сокращенную аббревиатуру (ТНВД) выполняет следующие основные функции:

– подает топливо под высоким давлением в топливную систему ДВС;

– регулирует моменты впрыска топлива.

Топливный насос относится к наиболее важным устройствам, как бензиновых, так и дизельных двигателей.

ТНВД обычно применяются в дизельных двигателях. В бензиновых двигателях применение ТНВД нецелесообразно, ввиду того, что в нем не требуются такие высокие давления, как в дизельном двигателе.

Можно выделить следующие основные конструктивные элементы топливного насоса:

  1. Плунжер (поршень) + Цилиндр (втулка) = Плунжерная система (пара)

Плунжерная система изготавливается из высокопрочной стали на высокотехнологическом оборудовании (станках), в связи с необходимостью высокой точности.

Всего один завод на все пост Советское пространство изготавливал плунжерные пары. Изготовление плунжерных пар сегодня происходит таким образом.

Читайте также:
Как перегнать авто из Калининграда

Если внимательно изучить процесс производства плунжерных пар, то отчетливо видно, что огромное значение уделяют прецизионному сопряжению (зазор между плунжерной парой). Плунжер плавно входит в цилиндр под действием собственного веса.

Как изначально упоминалось, топливный насос служит не только для подачи топлива в топливную систему, но и подает его к форсункам на каждый цилиндр на бензиновом двигателе.

Форсунки являются связующим звеном этой цепи и соединяются с насосом специальными трубопроводами. Для эффективного впрыска топлива форсунки соединяются с нижней распылительной частью с специальными отверстиями для увеличения эффективности впрыска топлива с дальнейшим воспламенением. Момент впрыска топливной смеси в камеру сгорания регулируется углом опережения зажигания.

Типы топливных насосов

Существует три основных типа ТНВД , котор ые мы с вами рассмотрим:

  1. распределительный ;
  2. рядный
  3. магистральный.

Рядный ТНВД

Рядный топливный насос высокого давления оснащен плунжерными парами, которые располагаются друг с другом. Их количество зависит от количества рабочих цилиндров двигателя и соответствует ему. Одна плунжерная пара обеспечивает подачу топлива только для одного цилиндра.

Пары устанавливаются в корпусе насоса, в котором имеются каналы входа и выхода. Плунжер приводится в работу при помощи кулачкового вала, который имеет привод от коленчатого вала.

При вращении кулачкового вала топливного насоса, кулачки воздействуют на толкатели плунжеров приводя их в движении внутри втулок насоса. Вследствие впускные и выпускные отверстия начинают последовательно открываться и закрываться. Когда плунжер движется вверх во втулке создается давление, которое приводит к открытию нагнетательного клапана, через который топливо подается к форсунке по топливопроводу.

Момент подачи топлива регулируется специальным устройством (муфтой центробежного типа). Работа муфты центробежного типа основана на перемещении грузиков под действием центробежной силы.

Центробежная сила изменяется по мере роста (или уменьшения) величины оборотов коленчатого вала двигателя, вследствие чего грузики расходятся к внешним краям муфты, либо сближаются к оси. Происходит смещение кулачкового вала относительно привода, что приводит к изменению работы плунжеров.

Когда обороты коленчатого вала увеличиваются – происходит ранний впрыск топлива, когда уменьшаются – поздний впрыск топлива.

Рядные топливные насосы зарекомендовали себя своей надежностью. Они совсем не привередливы к качеству топлива и смазка ТНВД осуществляется обычным моторным маслом.

Недостатки рядных топливных насосов высокого давления – их размер.

Распределительный ТНВД

Распределительный ТНВД включает в себя один или два плунжера, что зависит от объема двигателя.

И эти один или два плунжера работают на все цилиндры двигателя. Таким образом удалось не только обеспечить более равномерную подачу топлива, но и уменьшить габариты топливного насоса высокого давления. Недостатки распределительных ТНВД в их надежности и долговечности.

Распределительные ТНВД имеют различные типы привода:

  1. торцевой привод;
  2. внутренний привод;
  3. внешний привод;

Наиболее эффективными себя показали торцевые и внутренние приводы ТНВД, с меньшей нагрузкой.

Кстати, такие импортные насосы, как Bosch, оснащены именно торцевым и внутренним приводом, а внешний привод имеют насосы отечественного производства.

Основным элементом в торцевом приводе Bosch является распределительный плунжер, который создает давление и распределяет горючую смесь по цилиндрам. Плунжер распределитель при этом совершает вращательные и возвратно-поступательные перемещения при вращательных движениях кулачковой шайбы.

Плунжер совершает возвратно-поступательно движение одновременно с вращением кулачковой шайбы, которая обегает кольцо. Воздействие шайбы на плунжер обеспечивает высокое давление топлива. Возврат плунжера в начальное положение осуществляется с помощью возвратного механизма.

Именно вращательное движение плунжера, что приводится от приводного вала, способствует распределению топлива в цилиндрах. Величина подачи топлива обеспечивается с помощью электромагнитного клапана или центробежной муфты.

Работа насоса состоит из нескольких этапов:

  1. Закачка порции топлива в надплунжерное пространство;
  2. Нагнетание давления за счет сжатия и распределение топлива по цилиндрам.
  3. Возвращение плунжера в исходное положение. Повторение цикла работы.
Внутренний кулачковый привод ТНВД

Такой привод топливных насосов применяется в распределительных ТНВД роторного типа, например, Bosch VR, Lucas DPC. В данном типе ТНВД распределение горючей смеси происходит за счет плунжера и распределительной головки.

Распределительный вал оснащается двумя плунжерами, расположенными друг напротив друга, которые нагнетают топливо. Тем выше давление в насосе, чем меньше расстояние между плунжерами. По мере возрастания давления топливо поступает к форсункам через нагнетательные клапана.

Читайте также:
Ваз 2107 салон своими руками
Магистральный ТНВД

Магистральный ТНВД используется в известной системе подачи топлива Common Rail. Работа магистрального ТНВД заключается в накапливании топлива в топливной рампе, затем подается на форсунки. Давление в магистральном топливном насосе высокого давления составляет примерно 180 Мпа.

Магистральный насос бывает одно-, двух- или трех плунжерным. Приводится магистральный ТНВД от кулачкового вала.

Когда кулачки воздействуют на плунжер, тот перемещается вниз, происходит расширение компрессионной камеры, давление падает и создается разряжение, которое приводит к открытию впускного клапана, и топливо начинает поступать.

Когда плунжер подымается – давление растет и клапан закрывается. Когда давление достигает необходимой отметки, топливо через выпускной клапан нагнетается в топливную рампу.

Процесс подачи топлива в магистральном ТНВД регулируется дозирующим топливным клапаном, открытие и закрытие, которого осуществляется с помощью электроники.

Топливный насос высокого давления (ТНВД): виды, устройство, принцип работы

Топливный насос (сокращенно ТНВД) предназначен для выполнения следующих функций – подачи горючей смеси под высоким давлением в топливную систему ДВС, а также регулирования его впрыска в определенные моменты. Именно поэтому топливный насос считается наиболее важным устройством для дизельных и бензиновых двигателей.

Преимущественно ТНВД применяются, конечно же, в дизельных двигателях. А в бензиновых двигателях ТНВД встречаются лишь в тех агрегатах, на которых используется система непосредственного впрыска топлива. При этом насос в бензиновом двигателе работает куда с меньшей нагрузкой, поскольку такое высокое давление, как в дизеле не требуется.

Основные конструктивные элементы топливного насоса – плунжер (поршень) и цилиндр (втулка) малого размера, которые объединяются в единую плунжерную систему (пару), изготовленную из высокопрочной стали с большой точностью.

На самом деле изготовление плунжерной пары довольно трудная задача, требующая специальных высокоточных станков. На весь Советский союз был, если не изменяет память, всего один завод, на котором изготавливались плунжерные пары.

Как делают плунжерные пары в нашей стране сегодня можно увидеть в этом видео:

Между плунжерной парой предусматривается очень маленький зазор, так называемое прецизионное сопряжение. Это отлично показано в видео, когда плунжер очень плавно, с зависанием под действием собственного веса входит в цилиндр.

Итак, как мы уже сказали ранее, топливный насос применяется не только для своевременной подачи горючей смеси в топливную систему, но и для распределения его через форсунки в цилиндры в соответствии с типом двигателя.

Форсунки – связующее звено в этой цепи, поэтому они соединены с насосом трубопроводами. С камерой сгорания форсунки соединяются нижней распылительной частью, оснащенной небольшими отверстиями для эффективного впрыска топлива с дальнейшим его воспламенением. Определить точный момент впрыска ТС в камеру сгорания позволяет угол опережения.

Типы топливных насосов

В зависимости от особенностей конструкции различают три основных типа ТНВД – распределительный, рядный, магистральный.

Рядный ТНВД

Этот тип топливного насоса высокого давления оснащается плунжерными парами, расположенными рядом друг с другом (потому и такое название). Их количество строго соответствует количеству рабочих цилиндров двигателя.

Таким образом, одна плунжерная пара обеспечивает подачу топлива в один цилиндр.

Пары устанавливаются в насосном корпусе, в котором предусмотрены каналы входа и выхода. Запускается плунжер при помощи кулачкового вала, соединенного, в свою очередь, с коленвалом, от которого и передается вращение.

Кулачковый вал насоса, при вращении кулачками воздействует на толкатели плунжеров, заставляя их двигаться внутри втулок насоса. При этом поочередно открываются и закрываются впускные и выпускные отверстия. При движении плунжера вверх по втулке создается давление, необходимое для открывания нагнетательного клапана, через который топливо под давлением направляется по топливопроводу к определенной форсунке.

Момент подачи топлива и регулировка его количества, необходимого в конкретный момент времени может осуществляться либо с помощью механического устройства, либо с помощью электроники. Такая регулировка нужна для корректировки подачи топлива в цилиндры двигателя в зависимости от частоты вращения коленчатого вала (оборотов двигателя).

Механическое управление обеспечивается за счет использования специальной муфты центробежного типа, которая закреплена на кулачковом валу. Принцип действия такой муфты заключен в грузиках, которые находятся внутри муфты и имеют возможность перемещаться под действием центробежной силы.

Центробежная сила изменяется с ростом (или уменьшением) величины оборотов двигателя, благодаря чему грузики либо расходятся к внешним краям муфты, либо снова сближаются к оси. Это приводит к смещению кулачкового вала относительно привода из-за чего и изменяется режим работы плунжеров и, соответственно, при увеличении частоты вращения коленвала двигателя обеспечивается ранний впрыск топлива, а поздний, как вы догадались, при снижении оборотов.

Читайте также:
Простая настройка развала схождение своими руками

Рядные топливные насосы весьма надежны. Их смазка осуществляется моторным маслом, поступающим из системы смазки двигателя. Они совершенно не привередливы к качеству топлива. На сегодняшний день применение таких насосов из-за их громоздкости ограничено грузовыми автомобилями средней и большой грузоподъемности. Примерно до 2000 года они применялись и на легковых дизельных моторах.

Распределительный ТНВД

В отличие от рядного насоса высокого давления, у распределительного ТНВД может быть либо один, либо два плунжера в зависимости от объема двигателя и, соответственно, необходимого объема топлива.

И эти один или два плунжера обслуживают все цилиндры двигателя, которых может быть и 4, и 6, и 8, и 12. Благодаря своей конструкции, в сравнении с рядными ТНВД, распределительный насос более компактен и меньше весит, и при этом способен обеспечить более равномерную подачу топлива.

К основному недостатку данного типа насосов можно отнести их относительную недолговечность. Распределительные насосы устанавливаются только в легковые автомобили.

Распределительный ТНВД может оснащаться различными типами приводов плунжера. Все эти типы привода являются кулачковыми и бывают: торцевыми, внутренними, внешними.

Наиболее эффективными считаются торцевые и внутренние приводы, которые лишены нагрузок, создаваемых давлением топлива на приводной вал, вследствие чего они служат несколько дольше, нежели насосы с внешним кулачковым приводом.

Кстати, стоит отметить, что импортные насосы фирм Bosch и Lucas, наиболее часто использующиеся в автомобилестроении оснащены именно торцевым и внутренним приводом, а внешний привод имеют насосы серии НД отечественного производства.

Торцевой кулачковый привод

В этом типе привода, используемом в насосах Bosch VE, основным элементом является распределительный плунжер, предназначенный для создания давления и распределения топлива в топливных цилиндрах. При этом плунжер-распределитель совершает вращательные и возвратно-поступательные перемещения при вращательных движениях кулачковой шайбы.

Возвратно-поступательное перемещение плунжера осуществляется одновременно с вращением кулачковой шайбы, которая, опираясь на ролики, перемещается вдоль неподвижного кольца по радиусу, то есть, как бы обегает его.

Воздействие шайбы на плунжер обеспечивает высокое давление топлива. Возврат плунжера в исходное состояние осуществляется благодаря пружинному механизму.

Распределение топлива в цилиндрах происходит за счет того, что приводной вал обеспечивает вращательные движения плунжера.

Величина подачи топлива может быть обеспечена с помощью электронного (электромагнитный клапан) или механического (центробежная муфта) устройства. Регулировка осуществляется за счет поворота на определенный угол неподвижного (не вращающегося), регулировочного кольца.

Цикл работы насоса состоит из следующих стадий: закачка порции топлива в надплунжерное пространство, нагнетание давления за счет сжатия и распределение топлива по цилиндрам. Затем плунжер возвращается в исходное положение и цикл повторяется заново.

Внутренний кулачковый привод

Внутренний привод применяется в распределительных ТНВД роторного типа, например, в насосах Bosch VR, Lucas DPS, Lucas DPC. В таком типе насоса подача и распределение топлива осуществляется посредством двух устройств: плунжера и распределительной головки.

Распределительный вал оснащается двумя противоположно-расположенными плунжерами, которые обеспечивают процесс нагнетания топлива, чем меньше расстояние между ними, тем выше давление топлива. После нагнетания давления топливо устремляется к форсункам по каналам распредголовки через нагнетательные клапана.

Подачу топлива к плунжерам обеспечивает специальный подкачивающий насос, который может отличаться в зависимости от типа своей конструкции. Это может быть либо шестеренчатый насос, либо роторно-лопастной. Подкачивающий насос находится в корпусе насоса и приводится в действие приводным валом. Собственно, он прямо на этом валу и установлен.

Распределительный насос с внешним приводом рассматривать не будем, поскольку, скорее всего, их звезда близка к закату.

Магистральный ТНВД

Такой вид топливного насоса применяется системе подачи топлива Common Rail, в которой топливо перед тем, как поступить к форсункам сначала накапливается в топливной рампе. Магистральный насос способен обеспечить высокую подачу топлива – свыше 180 МПа.

Магистральный насос может быть одно-, двух- или трехплунжерным. Привод плунжера обеспечивается кулачковой шайбой или валом (тоже кулачковым, разумеется), которые в насосе совершают вращательные движения, проще говоря, крутятся.

Читайте также:
Как сделать пружину мягче

При этом в определенном положении кулачков, под действием пружины плунжер перемещается вниз. В этот момент происходит расширение компрессионной камеры, за счет чего в ней снижается давление и образуется разряжение, которое заставляет открыться впускной клапан, через который топливо проходит в камеру.

Поднятие плунжера сопровождается увеличением внутрикамерного давления и закрытием клапана впуска. При достижении давления, на который настроен насос, открывается выпускной клапан, через который топливо нагнетается в рампу.

В магистральном насосе управление процессом подачи топлива реализуется дозирующим топливным клапаном (который приоткрывается или закрывается на необходимую величину) при помощи электроники.

Что такое ТНВД и его роль в работе двигателя

Топливный насос высокого давления (Injection pump в английских источниках) — узел системы питания автомобиля. Родоначальник ТНВД — Роберт Бош. Изначально устанавливался исключительно на дизельных силовых агрегатах. На легковых машинах стал использоваться с конца 30‐х годов XX века. Современные автогиганты применяют этот технически сложный блок на бензиновых моторах, имеющих распределенный впрыск топлива.

Что такое ТНВД и для чего он нужен?

ТНВД — что это такое в машине? Условно можно сравнить с сердцем человека — узел, обеспечивающий бесперебойную циркуляцию крови (топлива) по организму (топливной системе). На деле назначение блока несколько шире:

  • точное дозирование подаваемого топлива, где величина порции зависит от нагрузки;
  • нагнетание топлива в форсунки;
  • определение момента впрыска горючего в цилиндры.

Преимущество ТНВД перед карбюратором заключается именно в возможности подачи точно отмеренной порции топливно‐воздушной смеси в камеры внутреннего сгорания. Это решение позволяет снизить расход топлива. Насос напрямую связан с коленчатым валом: при разгоне порции увеличиваются, при падении оборотов — уменьшаются.

Так как работа дизельных агрегатов сопряжена с высокими нагрузками, то подача солярки производится под высоким давлением, обеспечивающим полное сгорание. Бензиновые моторы работают при значительно меньшей нагрузке. Поэтому использование топливного насоса целесообразно в системах с прямым впрыском горючего (не имеющих впускного коллектора).

Подводя промежуточный итог, можно сказать: что такое ТНВД в автомобиле — это способ увеличить КПД двигателя, снизить расход потребления топлива.

Устройство и принцип работы

Схематически устройство простого рядного ТНВД можно представить следующим образом:

  • поршень (плунжер), сопряженный с цилиндром (втулкой), которые работают как единое целое — плунжерная пара;
  • канавки для подачи топлива к плунжерным парам;
  • кулачковый вал с центробежной муфтой; вращение вала происходит посредством ремня ГРМ;
  • толкатели плунжера, на которые давит кулачковый вал;
  • возвратные пружины, обеспечивающие возврат плунжера;
  • клапаны нагнетательные;
  • штуцеры;
  • рейки зубчатые;

  • всережимный регулятор, который активируется педалью газа.
  • Представляя устройство узла, несложно понять его принцип работы, схожий с работой двухтактного ДВС:

    • вращается кулачковый вал;
    • кулачки вала давят на толкатели плунжера;
    • происходит движение плунжера по цилиндру;
    • повышение давления приводит к открытию нагнетательных клапанов;
    • топливо поступает через клапан к форсункам.

    Конструкция насоса предусматривает подачу к форсункам не всей воздушно‐топливной смеси, но только строго определенной порции. Остатки отправляются в сливные клапаны. Центробежная муфта обеспечивает подачу дизельного горючего в конкретный момент. Всережимный регулятор необходим для определения количества смеси: давление на педаль газа увеличивает объем, ослабление — уменьшает.

    От механики к электронике

    Механические насосы постепенно вытесняются агрегатами с электронной начинкой. Устройство и принцип работы узлов отличается тем, что все происходящие в ТНВД процессы регулируются электроникой. Здесь обеспечение максимально точного количества смеси, моментальная реакция на малейшее изменение динамики. Механическим насосам такие параметры недоступны. Электроника позволила снизить циклы нестабильного сгорания топлива, уменьшить нестабильность работы дизеля на холостом ходу.

    Следующий шаг — двухфазный впрыск топлива, обеспечивающий полноту сгорания. Следствие — уменьшение выброса в атмосферу токсичных продуктов и увеличение КПД двигателя. При этом система контролирует:

    • положение педали газа;
    • частоту вращения распредвала двигателя;
    • температуру двигателя (охлаждающей жидкости);
    • скорость движения;
    • величину подъема иглы форсунки;
    • давление наддува воздуха;
    • температуру воздуха на впуске;
    • работу свечей накаливания.

    ТНВД с электронными блоками управления снабжены программами самодиагностики, значительно расширяющими возможности использования насосов. Так, при возникновении ряда отказов система будет работать, обеспечивая движение транспортного средства. Полный отказ происходит при выходе из строя микропроцессоров.

    Виды ТНВД

    В машиностроении используются следующие виды ТНВД:

    • рядные;
    • распределительные;
    • магистральные.

    По принципу действия ТНВД делят:

    • непосредственного действия с механическим приводом плунжера;
    • с аккумуляторным впрыском.
    Читайте также:
    Почему кидает масло в воздушный фильтр ВАЗ 2109?

    Конструкция агрегатов различна, но неизменным является основной рабочий узел — плунжерная пара.

    Рядные ТНВД используются на тяжелых и средних грузовиках, активно применяются в машиностроении. Неоспоримое преимущество — способность функционировать на топливе низкого качества. Простота конструкции — это надежность и неприхотливость в обслуживании. В рядных моделях количество плунжерных пар соответствует количеству цилиндров. Недостаток — громоздкость.

    В распределительных насосах одна или две плунжерные пары (зависит об объема двигателя) обслуживают все цилиндры. Такая схема позволяет значительно уменьшить габариты и массу узла и обеспечивает равномерную подачу топливной смеси. Применяют агрегаты этого типа на легковых автомобилях. Популярные модели — Bosch, Lucas. Распределительные ТНВД различаются по исполнению кулачкового привода: торцевой, внутренний или внешний. Последний вариант практически не производится. Недостаток распределительных насосов — недолговечность.

    Магистральные ТНВД имеют отличную от предыдущих вариантов схему. Нагнетание топлива производится плунжерами (от одного до трех), приводимыми в движение кулачковой шайбой либо валом. Дозирующий клапан отвечает за регулировку подачи топлива. Открытие и закрытие клапана обеспечивается электроникой. Агрегаты этого типа используются в топливной системе Common Rail.

    Как понять, что ТНВД неисправен

    Производители постоянно улучшают качество насосов, проводя испытания агрегатов в сборе и отдельных элементов. Но от возникновения неполадок никто не застрахован. Протестировать ТНВД, напичканный электроникой, без специального оборудования и программного обеспечения не представляется возможным. Как же понять, что проблемы возникли именно с этим узлом? Общие признаки таковы:

    • резкое увеличение расхода топлива;
    • проблемы с запуском двигателя;
    • выхлопные газы черного цвета;
    • едкий запах и повышенная дымность выхлопа;
    • регулярное соскальзывание ремня ГРМ;
    • утечки топлива;
    • падение мощности ДВС;
    • нестабильная работа мотора на холостых обортах.

    Основная причина поломок — загрязнение плунжеров насоса (некачественное топливо, смазка и т. д.). Опасна для микронных допусков плунжера и вода, которая может содержаться в горючем.

    Подводя итоги, можно сказать, что при соблюдении несложных правил эксплуатации (своевременный сервис, использование качественных ГСМ), ТНВД — надежный узел, позволяющий экономно расходовать топливо.

    Тормозная система зил-130 – Зил -130

    На автомобиле ЗИЛ -130 применены две независимо действующие тормозные системы: ножной тормоз с пневматическим приводом, действующий на все колеса, и ручной центральный тормоз с механическим приводом, действующий на трансмиссию.

    Тормозная система с пневматическим приводом работает по рассмотренной выше схеме и включает те же основные устройства.

    Воздушный компрессор повышенной производительности, поршневой, двухцилиндровый, с водяным охлаждением, закреплен на двигателе с правой стороны и приводится в действие ременной передачей от шкива водяного насоса двигателя.

    Рекламные предложения на основе ваших интересов:

    Цилиндры компрессора отлиты из чугуна в одном блоке, имеющем водяную рубашку, закрыты сверху общей чугунной головкой на прокладке и укреплены на картере, имеющем снизу отъемную крышку, являющуюся кронштейном для крепления компрессора. В головке под пробками установлены нагнетательные пластинчатые клапаны с пружинами и имеется водяная рубашка. В цилиндрах установлены чугунные поршни. На каждом поршне поставлены два компрессионных и одно маслосъемное кольца. По внутренней поверхности на компрессионных кольцах сделаны проточки, которыми кольца должны быть обращены вверх. Поршень при помощи пальца соединен с верхней головкой шатуна с запрессованной бронзовой втулкой. Пальцы — плавающего типа с заглушками из алюминиевого сплава.

    Нижняя разъемная головка шатуна снабжена вкладышами с антифрикционной заливкой и укреплена на шатунной шейке коленчатого вала двумя болтами. В теле шатуна сделан канал для смазки поршневого пальца.

    При отпускании педали доступ сжатого воздуха к тормозным камерам прекращается, и они сообщаются с атмосферой.

    При вращении коленчатого вала поршни в цилиндрах перемещаются вверх и вниз. Когда поршень перемещается в нижнее положение, открывается впускной пластинчатый клапан, установленный в гнезде блока, нагруженный пружинами и сообщающийся с воздушной камерой блока, и в цилиндр вследствие разрежения поступает воздух. При ходе поршня вверх впускной клапан закрывается, и находящийся в цилиндре воздух сжимается, открывая пластинчатый нагнетательный клапан, и воздух поступает в воздушную полость головки, откуда через отверстие по трубке нагнетается в воздушные баллоны. Воздух в воздушную камеру компрессора при его работе поступает по шлангу из воздухоочистителя двигателя.

    Смазка деталей компрессора комбинированная. Масло поступает из системы смазки двигателя по трубке, закрепленной в крышке, через уплотняющее устройство в канал коленчатого вала, обеспечивая смазку шатунных подшипников. По каналам в шатунах масло подводится к их верхним головкам. Масло, выдавливаемое из шатунных подшипников, разбрызгивается и смазывает стенки цилиндров и коренные подшипники коленчатого вала. Стекая со стенок цилиндров и других деталей, масло собирается в крышку картера и по сливной трубке поступает обратно в картер двигателя.

    Читайте также:
    Тахограф на Камаз - установка и подключение

    Цилиндры и головка компрессора охлаждаются водой, поступающей из системы охлаждения двигателя. Водяная рубашка блока компрессора соединена шлангом с впускным водяным трубопроводом блока двигателя, а водяная рубашка головки компрессора соединена с всасывающей полостью водяного насоса. Для заполнения системы охлаждения компрессора водой после заливки ее в радиатор необходимо дать поработать двигателю, а затем проверить уровень воды и долить ее.

    В блоке компрессора имеется разгрузочное устройство, обеспечивающее холостой ход компрессора в случае превышения нормального давления воздуха в баллонах.

    Под впускными клапанами 16 в каналах блока установлены плунжеры со штоками разгрузочного устройства, нагруженные через коромысло пружиной. Канал, расположенный под плунжерами, сообщается с регулятором давления.

    Регулятор давления с шариковыми клапанами закреплен на приливе блока цилиндров компрессора.

    В стальную втулку (рис. 425, а), закрепленную в корпусе регулятора, на регулировочных прокладках завернут штуцер, имеющий боковой канал 6. В штуцере установлен шток, нагруженный сверху пружиной с опорными шариками. Пружина закреплена регулировочным колпаком, навернутым на штуцер. В отрегулированном полоя<ении колпак стопорят контргайкой.

    Шток надавливает на два шарика, установленных в центральном канале втулки корпуса. Под нижним шариком расположена отжимная пружинка. К нижнему отверстию корпуса, имеющему сетчатый фйльтр, при помощи штуцера присоединяется воздухопровод от баллонов. Полость втулки, где расположены клапаны, через боковое отверстие в корпусе, снабженное фильтром, соединяется с каналом разгрузочного устройства компрессора. Сверху на корпусе закреплен кожух, закрывающий механизм регулятора.

    При нормальном давлении воздуха в тормозной системе, не превышающем 5,6—6,0 кГ/см2, шариковые клапаны (рис. 425, б) под действием пружины и штока опущены вниз. При этом отверстие втулки корпуса закрыто нижним шариком, а боковой канал штуцера открыт, сообщая через боковое отверстие корпуса и фильтр канал разгрузочного устройства компрессора с атмосферой; поэтому разгрузочное устройство выключено.

    При достижении давления воздуха в системе 7,0—7,4 кГ/см2 шарики поднимаются, сжимая через шток пружину. При этом боковой канал в штуцере закрывается верхним шариком, и канал разгрузочного устройства разобщается с атмосферой, а отверстие во втулке открывается нижним шариком и в канал разгрузочного устройства поступает сжатый воздух из баллонов. Под действием давления воздуха плунжеры разгрузочного устройства поднимаются, надавливая штоками на впускные клапаны компрессора. При этом оба цилиндра компрессора через воздушную камеру сообщаются между собой, и нагнетание воздуха в магистраль прекращается.

    При падении давления в магистрали регулятор опять включает компрессор в работу.

    Регулирование давления, при котором компрессор выключается из работы, осуществляется изменением количества регулировочных прокладок (рис. 425, а) под штуцером. Давление, при котором компрессор включается в работу, регулируют вращением колпака, изменяя затяяжу пружины.

    Предохранительный клапан (рис. 4) служит для предохранения тормозной системы от повышенного давления в случае неисправности регулятора давления. Клапан установлен на правом воздушном баллоне. В корпус предохранительного клапана завернут с одной стороны штуцер 6, являющийся гнездом для шарикового клапана; с другой стороны в корпус завернут регулировочный винт, под которым на контрольном стержне установлена пружина, прижимающая шарик к гнезду. Винт стопорится контргайкой.

    В случае возрастания давления в системе выше 9,0—9,5 кГ/см2 под действием силы давления воздуха шариковый клапан приподнимается, сжимая пружину, и воздух из системы выходит через канал в корпусе.

    Давление пружины можно регулировать вращением винта. Когда необходимо проверить работу клапана, его можно открыть, вытягивая контрольный стержень.

    Воздушный баллон представляет собой металлический цилиндрический резервуар большой емкости. На автомобиле ЗИЛ -130 установлены два воздушных баллона общей емкостью 40 л. Баллоны закреплены на правом лонжероне рамы. В правом баллоне установлены предохранительный клапан и кран для отбора воздуха. В обоих баллонах имеется кран для выпуска конденсата. Баллоны соединены трубками с компрессором и с тормозным краном.

    Тормозная камера колесного тормоза состоит из корпуса (рис. 427, а) с крышкой, между которыми зажата гибкая резино-тканевая диафрагма, опирающаяся на шайбу штока, имеющего отжимные пружины. На штоке снаружи навернута и закреплена гайкой соединительная вилка. К крышке при помощи штуцера присоединена трубка от тормозного крана. Тормозная камера прикреплена на кронштейне около тормозного диска болтами. Колесные тормоза передних колес имеют две чугунные колодки с приклепанными к ним накладками. Колодки стянуты пружиной. С одной стороны колодки установлены на опорных эксцентрических пальцах, закрепленных в кронштейнах тормозного щита. С другой стороны между колодками входит тормозной кулак. Вал кулака установлен в кронштейне тормозного щита. С валом при помощи червячного регулировочного механизма связан рычаг, соединенный со штоком тормозной камеры. Поворотом червяка регулировочного механизма можно изменять положение шестерни и вала с кулаком, чем регулируется положение тормозных колодок по отношению к тормозному барабану. Червяк стопорится шариковым фиксатором.

    Читайте также:
    Как быть, если стучит двигатель на ВАЗ- 2107

    В задних тормозах колодки имеют профилированные накладки. Одним концом колодки свободно опираются на эксцентриковые пальцы, не охватывая их целиком, поэтому колодки стянуты двумя пружинами. Другой конец колодок снабжен роликами, которыми колодки прижаты к разжимному кулаку, имеющему спиральные поверхности.

    Текущая регулировка колодочных тормозов вследствие износа их накладок производится вращением головки червяка регулировочного механизма. Необходимость регулировки определяют по величине свободного хода штока тормозной камеры. Свободный ход не должен превышать для передних тормозов 25 мм и для задних 30 мм. Полную регулировку, проводимую после разборки тормозов или переклепки накладок, осуществляют поворотом опорных пальцев колодок и с помощью регулировочных механизмов рычагов.

    Тормозной кран комбинированного типа обеспечивает управление тормозами автомобиля и прицепа и устанавливается на автомобили, предназначенные для работы с полуприцепами и прицепами.

    В общем корпусе установлены две секции тормозного крана. Нижняя секция управляет тормозами автомобиля, а верхняя — тормозами прицепа.

    В нижней секции крана между корпусом и крышкой закреплена гибкая резино-тканевая диафрагма с гнездом выпускного клапана и отжимной пружиной. В крышке расположены впускной и выпускной конусные резиновые клапаны, закрепленные на стержне отжимной пружиной.

    К отверстию пробки при помощи штуцера присоединяется воздухопровод от баллонов, а к боковому отверстию — воздухопровод от тормозных камер колесных тормозов.

    Полость крана под диафрагмой сообщается с атмосферой через выпускное окно, снабженное клапаном.

    В корпусе установлен передвижной стакан с расположенной внутри него уравновешивающей пружиной.

    Верхний кран управления тормозами прицепа имеет аналогичное устройство. Уравновешивающая пружина закреплена на штоке, установленном в направляющей втулке корпуса. К отверстию в пробке с помощью штуцера присоединен воздухопровод от баллонов, к боковому отверстию против клапана — магистраль от прицепа.

    В передней крышке корпуса на оси, соединенной со штоком крана прицепа установлен качающийся основной рычаг.

    Верхний конец рычага соединен при помощи тяги через промежуточный рычаг и тягу с тормозной педалью. Выход тяги из крана закрыт уплотняющим гофрированным резиновым чехлом, закрепленным на верхней крышке.

    Нижний конец основного рычага вставленным в него пальцем входит в вырез рычага нижней секции крана. Этот рычаг установлен шарнирно на оси, закрепленной в крышке, и соприкасается с упором стакана. Против конца основного рычага и штока верхней секции в стенки крышки завернуты регулировочные ограничительные болты. В вырез штока входит кулачок валика, наружный рычаг которого тягой соединен с рычагом ручного тормоза.

    На крышке тормозного крана закреплен датчик стоп-сигпала.

    Действие комбинированного тормозного крана и всей тормозной системы заключается в следующем.

    Когда тормозная педаль не нажата, впускной клапан нижней секции закрыт, а выпускной открыт. При этом тормозные камеры тормозов автомобиля разобщены с воздушными баллонами и через выпускное окно сообщены с атмосферой, т. е. тормоза автомобиля выключены.

    В верхней секции выпускной клапан закрыт, а впускной открыт, поэтому в магистраль прицепа поступает сжатый воздух. Тормоза прицепа, работающие при падении давления в соединительной магистрали, отпущены.

    В случае, если давление в магистрали прицепа превышает 4,8—5,3 кГ1смг, диафрагма 8 переместится вперед, сжимая уравновешивающую пружину, и впускной клапан закроется, прекращая подачу сжатого воздуха.

    При нажатии на тормозную педаль основной рычаг поворачивается, перемещая шток 6 верхней секции вперед, а стакан нижней секции при помощи малого рычага назад. При этом в нижней секции диафрагма с гнездом, перемещаясь, закрывает выпускной клапан и открывает впускной. Тормозные камеры колесных тормозов автомобиля разобщаются от атмосферы и в них поступает сжатый воздух, вследствие чего происходит торможение колес.

    Читайте также:
    Простая настройка развала схождение своими руками

    Если давление воздуха в тормозной магистрали автомобиля превысит допустимое значение, пропорциональное нажатию на тормозную педаль, давлением воздуха диафрагма сместится вперед, преодолевая сопротивление уравновешивающей пружины, и впускной клапан закроется, прекращая подачу сжатого воздуха.

    В верхней секции под действием основного рычага шток сдвинется вперед, сжимая уравновешивающую пружину. При этом впускной клапан закроется, а выпускной откроется, сообщая магистраль прицепа с атмосферой. Вследствие падения давления в магистрали под действием воздухораспределителя, установленного на прицепе, тормоза прицепа будут включены.

    При отпускании педали торможение автомобиля и прицепа прекращается.

    На модификациях автомобиля ЗИЛ -130, не работающих с прицепами, устанавливают одинарный тормозной кран. Действие одинарного крана аналогично действию нижней секции комбинированного крана.

    Ручной центральный тормоз — барабанно-колодочного типа. Чугунный тормозной барабан закреплен на заднем конце вторичного вала коробки передач. Внутри барабана расположены две колодки с фрикционными накладками. Оси колодок закреплены в опорном кронштейне тормоза. Колодки постоянно стягиваются двумя пружинами и раздвигаются при торможении разжимным кулаком. Вал кулака установлен в опорном кронштейне. Рычаг вала кулака тягой соединен с рычагом ручного привода. Ручной рычаг снабжен стопорной защелкой, перемещающейся по сектору и управляемой от рукоятки, что позволяет закреплять рычаг в заторможенном состоянии.

    Регулировка ручного тормоза осуществляется перестановкой пальца соединительной тяги в отверстиях рычага вала кулака.

    Зил -130

    Зил самосвал

    Тормозная система зил-130

    Тормозная система

    тормозная система

    Тормозная система автомобилей ЗИЛ 130-431410 может быть многопроводной или одноконтурной в зависимости от времени выпуска автомобилей. Схемы тормозных систем приведены на рис 12-15 и 12-16. Многоконтурный тормозной привод автомобилей ЗИЛ-431410 отличается от автомобилей ЗИЛ-433360 количеством примененных аппаратов и их подсоединением. Сами аппараты тормозного привода одинаковы. На автомобилях

    многоконтурная тормозная система

    Схема рабочей тормозной системы с одноконтурным неразделенным приводом

    одноконтурная тормозная система

    Тормозные системы как мы видим на рисунках бывают 2 видов. Мы будем делать из многоконтурной системы похожую на одноконтурную. Уберем краны лишние, которые можно сказать не нужны для работы тормозной системы. Смотрим третий рисунок. Тут я хочу показать, как я сделал из многоконтурной системы зил-431410 одноконтурную.

    Я убрал краны такие как: регулятор тормозных сил, кран управления тормозной системой прицепа с двух проводным приводом, одинарный защитный клапан, пневмо электрические датчики снижения давления, соединительные головки приводов тормозов прицепа. Как говорится чем проще, тем надежнее. Чем меньше трубок под давлением воздуха, тем меньше будет стравливать воздух.

    переделанная система тормозов

    На верхнем и нижнем рисунках посмотрите как сделана схема пневматического тормозного привода и увидите разницу .По данной схеме сделаете все подключения я думаю разберетесь, ни чего сложного нет.

    Тормозные системы

    Автомобиль оборудован тремя тормозными системами, которые позволяют надежно затормаживать автомобиль и прицеп, оборудованный как однопроводным, так и двухпроводным приводом.

    Рабочая тормозная система

    Позволяет контролировать движение автомобиля и останавливать его надежно,быстро, независимо от скорости движения и нагрузки, от уклона подъема или спуска. Привод тормозных механизмов системы пневматический, с разделенным торможением передних и задних колес. Управление рабочей тормозной системой осуществляется с помощью тормозного крана.

    Стояночная тормозная система

    Обеспечивает автомобилю неподвижность на горизонтальной дороге или уклоне. Привод тормозных механизмов стояночной тормозной системы механический, от тормозных камер с пружинными энергоаккумуляторами. Установленных на заднем мосту. При движении автомобиля силовые пружины энергоаккумуляторов сжаты давлением воздуха.

    При падении давления воздуха в цилиндрах энергоаккумуляторов пружины проводят в действие тормозные механизмы задних колес. Управление стояночной тормозной системой осуществляется с помощью тормозного крана с ручным управлением, расположенного в кабине справа от сиденья водителя.

    тормозной кран тормозная система зил-130

    Контроль за состоянием тормозных систем осуществляется с помощью системы световой и звуковой сигнализации, датчики которой установлены в различных точках пневматического тормозного привода, а также клапанов контрольного вывода.

    Рейтинг
    ( Пока оценок нет )
    Понравилась статья? Поделиться с друзьями:
    Добавить комментарий

    ;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: