Перегрев хладагента в испарителях

Самостоятельная заправка кондиционера по перегреву

В одном из постов я описал особенности диагностики и методики заправки автокондиционера:
www.drive2.ru/l/558863619530425038/
Рекомендую к прочтению, прежде чем читать эту заметку.

Там возникли вопросы по нюансам заправки “По перегреву”. Поэтому детально простым языком и без заумных терминов рассмотрим, как точно заправить кондиционер “по перегреву”.

Начнем с нескольких нюансов:
1. Давление в системе в большей степени зависит от температуры окружающей среды нежели от количества хладагента. Т.е. залив 200 грамм фреона при температуре на улице 20 градусов и получив давление 2,5 бар, а потом перемеряв давление при температуре 30 градусов Вы можете увидеть давление уже 3,5 бара, но как так, хладагента же вы не добавляли, это физика, поэтому заправлять по давлению ни в коем случае нельзя, оно разное при разных температурах. Поэтому фразы умельцев типа: “задуй до 2,5 баров фреон и всё будет ок” не прокатят.
2. Кондиционер выдает разное количество холода при разных температурах окружающей среды. Т.е. если на улице +35-40С, не стоит ожидать от него чудес и думать, что он стал холодить хуже, нет он холодит, как и раньше, просто условия окружающей среды поменялись, слишком жарко стало на улице, поэтому менее прохладно стало в машине.

Переходим к методике заправки по “перегреву”.
Суть методики состоит в том, что существуют нормы температуры перегрева для разных условий окружающей среды. Для упрощения берется норма температуры перегрева в 5-8 градусов.
Перегрев — это разность между t пара на выходе из испарителя и t кипения жидкости .
Формула: Т пер = Т на выходе испарителя — Т кипения фреона

Т.е. чтобы правильно заправить кондиционер нам нужно чтобы разность между “t пара на выходе из испарителя” и “t кипения жидкости” (в нашем случае это R134а фреон) была в пределах 5-8 градусов.

Теперь нам нужно узнать эти температуры.
1. Т кипения фреона, мы берем по манометру или по линейке холодильщика, в зависимости от давления в испарителе.
1.1. Если у Вас есть манометр со шкалой t кипения для разных фреонов

Находим на нем шкалу для автомобильного фреона R134а. Вот она и показывает эту температуру кипения.
Пример. На манометре т кипения для фреона R134а сейчас минус 2 градуса, при этом давление около 1,8 бар.

Эти минус 2 и есть нужная нам цифра.
1.2 Если у Вас манометр без этой шкалы. То на манометре просто смотрим давление, а потом по линейке холодильщика ищем сколько это градусов. Крайне неудобно, но для разовой заправки пойдет. Линейку можно найти в гугле. Даже есть приложение в плэймаркете. Называется Danfoss, вы туда вводите давление, а оно вам эту температуру показывает.

2. Т на выходе испарителя.
Из двух трубок кондиционера выбираем самую толстую, и в месте выхода этой трубки из салона под капот и крепим градусник, если не получается прям в месте выхода, то допускается чуть дальше, как например на фото.

Далее просто замеряем показания.

В итоге у нас идет процесс заправки, давление повышается потихоньку, и мы постоянно мониторим разницу температур, отнимая от Т на выходе испарителя, Т кипения фреона на манометре и ждем, когда разница станет 5-8 градусов.
Пример. При температуре кипения 0,5-1 градусов на манометре

мы имеем температуру на выходе испарителя 6 градусов.

Считаем по формуле:
Т пер = Т на выходе испарителя — Т кипения фреона
Т пер = 6 — 0,5 = 5.5 градусов, т.е. мы в диапазоне 5-8 градусов, соответственно, заправку можно останавливать, но лучше температурц кипения ещё немного поднять до 1-2 градусов, чтобы трубка не обмерзала.

Для тех кто хочет прям сильно заморочиться с идеальной заправкой, и не хочет просто опираться на базовые 5-8 градусов — текст ниже.
Один француз нарисовал график зависимости, откуда и получили эти 5-8 градусов. Я его чуток доработал, так как там сложно его воспринимать из-за разных градусников. Думаю, 90% кондиционерщиков и в глаза его не видели.

Так вот из этого графика мы можете узнать точную Т перегрева, а не просто диапазон 5-8 градусов.
Пример, на улице (на входе в конденсатор) +27 градусов, в салоне (на входе в испаритель) +26 градусов. Переводим +26 в машине с сухого на влажный термометр, получаем где-то +18, далее простым пересечением получаем температуру перегрева 8,3 градус.
Т.е. при температуре на улице +27С, и температуре в машине +26С, нужно пытаться достигнуть Т перегрева +8,3 градуса.

Перегрев хладагента в испарителях

продажа монтаж сервис

+7 927 791 01 07

Читайте также:
Армирование бетонного пола: расход и диаметр арматуры, технология и -инструкция

Как заправить кондиционер 410 фреоном по перегреву? (заправка кондиционера)

Чтобы заправить кондиционер своими руками, нужно понять что происходит внутри холодильного контура, при включенном (работающем) кондиционере. Поэтому для начала поясню что такое перегрев:

Теоретически, согласно труда французского автора П. Котзаглоаниана:

“Перегревом пара называют разность между температурой этого пара и температурой кипения жидкости, из которой этот пар образовался, при постоянном давлении. Для испарителей перегрев пара представляет собой разность между температурой, измеренной с помощью термобаллона ТРВ, и температурой кипения, соответствующей показаниям манометра НД.

В примере перегрев составляет: 11-4=7К.”

Могу предположить, что на рисунке проиллюстрирован опыт с хладогентом R22.

Хочу пояснить, что при работе кондиционера хладагент начинает кипеть в испарителе (внутренний блок кондиционера). На выходе из испарителя он переходит в газообразную форму (т.е. жидкость полностью переходит в пар или газ), затем по мере продвижения к конденсатору хладагент продолжает нагреваться выше точки температуры кипения, т.е. он перегревается.

Что бы Вы поняли – то это так же как разогреть чайник до 100 градусов цельсия – вода в нем начнет кипеть, если продолжать нагревать чайник то температура в нем повыситься например до 107 градусов, Тогда 107-100=7. 7 градусов это и есть перегрев.

Перегретый пар. Перегрев

После того, как вся вода превратилась в газ или пар, добавление тепла увеличит температуру пара

и превысит температуру кипения 100оС. Любое повышение температуры пара выше температуры

кипения (100оС) называется перегревом. Пар при 107оС перегрет на 7оС

Перегрев – это любое превышение температуры кипения газа для жидкой фазы. Когда жидкий хладагент

кипит при температуре 4оС в испарителе и затем температура газообразного хладагента повышается,

это значит увеличение перегрева. Если изменение фазового состояния хладагента из жидкости в газ или

пар происходит при 4оС и затем температура газообразного хладагента увеличивается до 7оС,

это означает, что он перегрет на 3оС.

Зная давление, можно по таблице определить температуру кипения R410A:

фреон R410 таблица зависимости температура – давление

Из таблицы видно, что если подключить манометр к кондиционеру то можно определить температуру хладогента по давлению на манометре. Поэтому признаком утечки или недостатка хладогента является факт обмерзания тонкой трубки или гайки внешнего блока. Все просто – раз гайка в инее или покрыта льдом, значит температура фреона ниже нуля, раз ниже нуля, значит давление ниже нормы, раз давление ниже нормы – значит недостаточно фреона, т.е. нужно дозаправить кондиционер.

Кстати, измерения надо проводить только после 5-10 минут после включения кондиционера. Нужно чтобы фреон распредилился по контуру, и кондиционер вышел на заданный производителем режим работы.

Итак: Перегрев = t газ.труб. – t (по манометру)

Вот иллюстрации на эту тему (датчик температуры установлен под теплоизоляцию газовой трубы – около 10 см от вентиля):

В рассматриваемом случае в кондиционере используется фреон R410A, температура на улице 18гр.С, в комнате 25гр.С, вентилятор внутреннего блока работает на максимальной скорости.

Перегрев = 4,7-0,2=4,5 гр.С

Стоит особо отметить что если требуется частая заправка кондиционера фреоном, то это значит, что присутствуют неисправности кондиционера!

Важно! Заправка кондиционера, и определение значения “перегрев сплит системы”, производиться на чистом (не забит грязью) кондиционере, в случае необходимости – надо промыть (очистить) радиаторы внутреннего и наружного блоков, а также вентилятор внутреннего блока от тополиного пуха и пыли. Скорость вентилятора внутреннего блока на период проведения работ по дозаправка, устанавливается пультом управления на максимум.

Чтобы лучше понять процессы внутри холодильной машины рекомендую ознакомиться с кратким курсом “Основы холодильной техники”

Каким фреоном заправлять кондиционер – уточните в инструкции, прилагаемой к кондиционеру, или ищите табличку с техническими характеристиками, на внутреннем или наружном блоке

По теории вроде бы все, а теперь опишу сам процесс “заправка кондиционера фреоном”:

1 Включаю кондиционер на охлаждение.

2 Подключаю манометр к баллону с фреоном, чуть открываю вентиль – слегка продуваем (вытесняем воздух) из шланга.

правила расположения баллона с фреоном при заправке, в зависимости от конструкции баллона (наличие/отсутствие сифона)

3 Сразу же подключаю к сервисному порту шланг с манометром (другой конец уже подключен к баллону).

4 Устанавливаю на газовую (толстую) трубку под теплоизоляцию датчик цифрового термометра.

5 Переворачиваю вверх дном баллон с фреоном, так как нам нужна заправка жидким фреоном.

6 Заправка кондиционера – приоткрываю чуть чуть и сразу закрываю вентиль на баллоне с фреоном – так несколько раз по чуть-чуть, с перерывами.

7 Наблюдаю за температурой – температура растет. Давление поднимается. Моя задача поднять давление примерно до 7 бар (для определения более точного значения существуют зависимости (кривые) от температур на улице и в помещении для каждого типа хладагента. Чем жарче – тем рабочее давление выше.

Читайте также:
Демонтаж перегородок в квартире по всем правилам

8 Через некоторое время в процессе манипуляции краном на баллоне туда – сюда наблюдаю, что вентили (гайки) и манометр покрылись инеем. Все. перекрываю кран на баллоне и жду несколько минут.

9 Температура медленно начнет понижаться до 5-11 градусов (зависит от внешней температуры воздуха), гайки и вентиль оттаивают ото льда (инея).

10 В конце процесса заправки, Вы должны наблюдать увеличение эффективности охлаждения испарителя (внутренний блок), при этом перегрев должен составлять 4-7 градуса. Значение перегрева зависит от окружающей температуры (см. табл. Зависимость значения перегрева от окружающей температуры).

Понять сколько заправлять фреона в кондиционер можно, если замерить потребляемый ток. Если кондиционер пере заправлен то он будет потреблять существенно больше тока, чем заявлено производителем. Ток измеряется специальным тестером – токоизмерительные клещи.

Если перегрев будет менее 4 градусов, то это означает, что кондиционер пере заправили – надо не спеша стравить излишек хладагента.

11 В процессе заправки также надо проанализировать вот эту диаграмму:

Еще может пригодиться вот эта таблица:

ВЛИЯНИЕ ТЕМПЕРАТУРЫ И ДАВЛЕНИЯ НА СОСТОЯНИЕ ХЛАДАГЕНТОВ

(одноименная глава перепечатана из книги – П. Котзаглониана)

Соотношение между температурой и давлением является одним из основных факторов, определяющих состояние хладагента как в испарителе, так и в конденсаторе, а также в обычной емкости с хладагентом. Ниже приведены более подробные объяснения влияния температуры и давления на состояние хладагента.

Кипение воды при понижении давления.

Известно, что для начала кипения воды при нормальном атмосферном давлении нужно нагреть воду до 100С. При вакуумировании фреоновой трассы кондиционера, с целью удаления паров, содержащих воду, вода, которая может находиться в трубках и испарителе, имеет температуру окружающей среды, то есть гораздо ниже 100С.

С помощью несложного опыта, можно пояснить действие вакуумирования на процесс закипания воды.

Пусть в прозрачной емкости будет вода, ее температура 30 С, емкость находится при атмосферном давлении. Понятно, что вода не кипит. Но, при подключении емкости к мощному вакуумному насосу, после начала вакуумирования видно, что вода начинает кипеть, несмотря на то, что ее температура составляет только 30С.

Это явление можно объяснить:

Поверхность воды находится под действием двух сил, которые направлены друг против друга. Первая сила Fi – внутренняя сила жидкости, направленная снизу вверх и стремящаяся вытеснить воду из сосуда.

Вторая сила Fe – внешняя сила, которая, напротив, стремиться удержать воду внутри сосуда.

До тех пор, пока силы Fi и Fe уравновешены, они взаимно нейтрализуются и в сосуде ничего не происходит.

*Модель процесса кипения, не является строrо научной, но помогает в доступной форме объяснить процессы кипения и конденсации.

СОСТОЯНИЕ ФРЕОНА В ЗАВИСИМОСТИ ОТ ДАВЛЕНИЯ И ТЕМПЕРАТУРЫ

Вакуумирование (понижение давления) внутри сосуда вызывает кипение воды.

Вакуумирование понижает давление над жидкостью – уменьшает сиу Fe. Когда в результате вакуумирования сила Fе становится меньше силы Fi, вода не может оставаться внутри сосуда и начинает выходить из него в виде пара: вода кипит (испаряется).

Подогрев воды вызывает её кипение. Подогрев yвeличивает внутреннюю cилу Fi, действуюшую в жидкости.

В результате подогрева сила Fi становится больше силы Fe, внешная сила больше не может удерживать воду в сосуде и начинается ее кипение.

Итак, чтобы вызвать кипение жидкости нужно повысить внутреннюю силу (noдoгревая жидкость), или nонuзumь внешнее давление над ее свободной поверхностью (вaкумируя сосуд).

Как вызвать кипение, поливая сосуд холодной водой?

В предыдущем примере мы вскипятили воду, вакуумируя сосуд и нарушая тем самым равновесие между силами Fe и Fi.

Когда вода закипит, закроем изолирующий вентиль сосуда. Кипение полностью прекратиться.

Потому что молекулы пара, образующиеся в процессе кипения жидкости, скапливаясь над ее поверхностью, увеличивают давление в сосуде. Когда давление становится достаточным для установления нового состояния равновесия между силами Fe и Fi кипение останавливается. Кипение начинается снова, если сосуд nолить холодной водой.

СОСТОЯНИЕ ХЛАДАГЕНТА В ЗАВИСИМОСТИ ОТ ТЕМПЕРАТУРЫ И ДАВЛЕНИЯ

Небольшая масса водяных паров, содержащихся в емкости, охлаждается значительно быстрее, чем большая масса воды.

В результате пары воды сжимаются быстрее, чем жидкость, и внешняя сила Fe (действующая в паровой фазе) уменьшается быстрее, чем внутренняя сила Fi (действующая в жидкости).

Когда сила Fе становится меньше силы Fi равновесие нарушается и кипение возобновляется.

Разница в удельной массе жидкости и ее пара.

Удельная масса тела это масса едиицы объема данного тела (например, 1 литр воды имеет массу 1 килограмм).

Один литр жидкого R22 при температуре 20°С имеет массу 1,2 кг, однако 1 литр паров R22, при той же температуре и атмосферном давлении, имеет массу 0.038 кг, то есть в 1,2/0,038 = 31 раз меньшую.

Читайте также:
Замена подшипника ступицы Приоры

при 20°С и атмосферном давлении 31 литр паров R22 имеет такую же массу, как литр жидкого R22.

В результате испарения жидкого R22 при 20°С, образующиеся пары занимают объем в 31 раз больший, чем объем жидкости, из которой они образовались.

Поэтому диаметр жидкостных линий в кондиционерах всегда меньше, чем диаметр naтрубков нагнетания (всасывания), хотя давления в двух магистралях почти одинаковы.

Соотношение между давлением и температурой.

Манометры, показывают соотношение между давлением паров и температурой для хладагентов , например R22 и R410А.

Попробуем представить, что происходит внутри сосуда, содержащего R22 в жидкой фазе, когда его температура растет.

В первом сосуде жидкий R22 находится при температуре 20°С и манометр показывает. что давление в емкости составляет 8 бар. Если температура возрастает небольшое количество жидкости испаряется, а сама жидкость при этом расширяется что приводит к повышению уровня жидкости в сосуде и небольшому снижению объема паров.

Однако, принимая во внимание то, что для размещения объема паров, образовавшихся в результате выкипания некоторого объема жидкости, требуется пространство, примерно в 30 раз большее, чем объем, который занимала испарившаяся жидкость, пары в сосуде сжимаются и давление в нем повышается по мере того, как растет температура.

Поэтому во втором сосуде, температура которого составляет 27С манометр показывает давление 10 бар.

Если температура продолжает расти и доходит, например, до 34°С, количество паров увеличивается гораздо быстрее по сравнению с повышением уровня жидкости и давление достигает 12,2 бар.

Таким образом, при росте температуры жидкости внутренняя сила Fi увеличивается, что приводит к испарению определенного количества жидкости. Высвобождающийся за счет этого объем оказывается слишком малым для образовавшегося количества паров, происходит их сжатие, давление растет одновременно растет внешняя сила Fe, и так до тех пор, пока не установится равновесие сил Fi и Fe.

Итак, в замкнутом сосуде состояние смеси паров с порождающей их жидкостью (их называют насыщенными парами или парожидкостной смесью в состоянии насыщения) подчиняется очень точному соотношению (зависящему от природы жидкости) между температурой жидкости и давлением насыщенных паров.

(одноименная глава перепечатана из книги – П. Котзаглониана)

Обслуживание холодильных установок: отклонения от оптимального режима работы

Большинство температур, которые характеризуют работу холодильных агрегатов, являются самоустанавливающимися, т.е. автоматика холодильных установок сама подбирает параметры работы системы согласно условиям работы оборудования:

  • тепловой нагрузки на испарительную систему;
  • производительности компрессора промышленной холодильной установки;
  • величины теплообменных поверхностей;
  • температуры окружающей среды.

Оптимальным называют такой режим работы холодильного оборудования, при котором создается наиболее благоприятный перепад температур между средами в теплообменниках. При обслуживании промышленных холодильных установок задачей персонала является наладка машин и создание таких внешних условий, чтобы самоустановленные системой параметры отвечали понятию оптимума, т.е. обеспечивали работу холодильной системы с минимальным расходом воды и электроэнергии, а также продолжительными межремонтными периодами. Эксплуатация промышленных холодильных агрегатов в режимах, отличных от оптимального, влияет на экономичность и безопасность холодильной системы.

Наиболее часто встречающимися отклонениями от оптимальной работы холодильной установки являются:

1) пониженная температура кипения хладагента;

2) повышенная температура нагнетания паров хладагента;

3) повышенная температура конденсации паров хладагента;

4) влажный ход компрессора.

Опасность пониженной температуры кипения хладагента

При снижении температуры кипения на 1°С холодопроизводительность компрессора падает на 4-5%, а потребляемая установкой мощность увеличивается на 2-3%. Также понижение температуры кипения хладагента сверх оптимального уровня опасно угрозой замерзания хладоносителя в испарителе, высокой вероятностью усушки продукции, ухудшением смазки фреоновых компрессоров, а также подмораживанием охлажденных грузов вблизи от приборов охлаждения.

Причины понижения температуры кипения:

1. Повышенные теплопритоки, которые могут наблюдаться вследствие плохой изоляции охлаждаемых помещений, циркуляционного ресивера, испарителей для охлаждения хладоносителя и трубопроводов.

2. Недостаточная поверхность теплопередачи испарителя при данной тепловой нагрузке. Причинами такого несоответствия могут быть:

  • неверный подбор теплообменных аппаратов;
  • несоответствие производительности компрессоров и охлаждающих приборов;
  • недостаток хладоносителя в панельном испарителе;
  • плохое обслуживание холодильных установок (засорение трубопроводов и фильтров, снеговая шуба на внешней поверхности приборов охлаждения, замасливание их внутренней поверхности);

3. Ухудшение теплопередачи испарительного оборудования, которое может быть связано:

  • с малым количеством хладагента в системе;
  • со скоплением масла;
  • с перебоями в работе вентиляторов воздухоохладителей;
  • с загрязнением и коррозией теплообменных поверхностей.

Опасность повышения температуры нагнетания паров хладагента

Повышение температуры нагнетаемого уже на 5°С по сравнению с допустимой свидетельствует о таких неполадках в работе холодильной установки:

1. Большом перегреве на линии всасывания компрессора холодильной установки , которое может возникать при таких условиях:

  • недостатке хладагента;
  • большом сопротивлении или плохой изоляции всасывающего трубопровода;
  • засорении парового фильтра на всасывании компрессора;
  • плохой изоляции испарителя, циркуляционного ресивера или отделителя жидкости.
Читайте также:
Как резать пенопласт чтобы не крошился в домашних условиях?

2. Неисправности компрессорного оборудования, а именно:

  • сильном износе компрессорного цилиндра;
  • негерметичном прилегании клапанов и их пластин, из-за чего пар перетекает из нагнетательной полости в полость всасывания или цилиндры;
  • поломке нагнетательного клапана;
  • несоответствующей вязкости или низком уровне масла в картере, из-за чего наблюдается сильное трение поршневых колец о стенки цилиндра;
  • недостаточном охлаждении компрессора: плохой подачи воды в охлаждающую рубашку либо нарушении теплообмена через стенки рубашки из-за недостаточного обслуживания холодильных машин.

Опасность повышения температуры конденсации паров хладагента

При увеличении температуры конденсации на 1°С наблюдается уменьшение холодопроизводительности на 1-2% и возрастание расхода электроэнергии на 2-2,5%. Увеличение температуры конденсации свыше 40…50°С недопустимо.

Основными причинами, которые вызывают повышение температуры конденсации, являются:

  1. Неисправности в системе охлаждения, которые могут возникать из-за:
  • неэффективной работы градирни;
  • засорения водяных фильтров;
  • недостаточного открытия водяных задвижек;
  • низкой производительности или неисправности насосов;
  • засорения форсунок испарительного конденсатора;
  • низкой температуры окружающей среды в зимнее время при эксплуатации воздушных конденсаторов.

2. Ухудшение теплопередачи в конденсаторах в результате:

  • неверного расчета количества работающих конденсаторов или уменьшения их поверхности (неправильный ремонт);
  • переполнения конденсатора жидким холодильным агентом;
  • присутствия в конденсаторе неконденсируемых примесей (воздуха, продуктов разложения масла);
  • ухудшения теплообмена из-за загрязнения поверхности труб;
  • плохого распределения охлаждающей воды из-за загрязнения форсунок и распределителей.

3. Дефекты водорегуляторов в автоматизированных холодильных установках.

Опасности влажного хода компрессорного оборудования

Одним из самых опасных режимов работы холодильной установки является влажный ход компрессора. При сжатии влажного пара происходит сильное охлаждение смеси, цилиндров и всей группы движения компрессора, в результате чего может возникнуть разрыв блока цилиндров (тепловой удар при резком охлаждении и гидравлический удар при чрезмерном повышении давления) и необходимость срочного ремонта поршневых компрессоров. Именно поэтому категорически запрещается впрыск жидкого хладагента в аммиачный компрессор.

Основными признаками влажного хода являются:

  • отсутствие перегрева всасываемого пара;
  • падение температуры нагнетания;
  • обмерзание картера и цилиндров компрессора;
  • изменение звука работы компрессора (вместо звонкого звука появляется глухой стук в клапанах и цилиндре).

Причинами попадания в компрессор влажного пара являются:

  1. Переполнение испарителя хладагентом, в т.ч. вследствие неисправности приборов автоматики.
  2. Вскипание жидкости в затопленных испарителях при резком скачке тепловой нагрузки или резком падении в них давления.
  3. Концентрация пара в трубопроводе всасывания при продолжительной стоянке или низкой температуре воздуха и плохой теплоизоляции трубопровода.

Таким образом, недостаточное техническое обслуживание холодильного оборудования в процессе их эксплуатации приводит к нарушению оптимальной работы холодильных установок и поломке холодильных агрегатов. Работающий с холодильным оборудованием персонал обязан иметь соответствующую квалификацию и должный навык работы с техникой. В ином случае для сервисного обслуживания холодильных установок необходимо привлекать специалистов из профильных компаний. Так сотрудники НПП «Холод» обеспечат качественное обслуживание холодильных агрегатов и составных частей, в т.ч. произведут техническое обслуживание компрессоров, теплообменных аппаратов, осуществят наладку системы. Также мы производим ремонт холодильных установок, модернизацию и реконструкцию холодильных систем, обучение персонала и оказываем иные услуги в области промышленного холода.

Перегрев хладагента в испарителях

Эксплуатация оборудования в режимах, отличных от оптимальных (например, в условиях повышенных температур окружающей среды), влияет на экономичность и безопасность работы холодильной установки.

В статье рассмотрены отклонения от оптимального режима работы установки, описаны условия их выявления и устранения.

Данный материал является в большей степени ответом на вопросы, поступающие в редакцию Холодильщик.RU , в частности: “На сколько процентов падает холодопроизводительность моей установки при такой жаре, и что делать?“.

Статья будет полезна специалистам, занятым на эксплуатации промышленного холодильного оборудования.

Регулирование режима работы холодильной установки достигается установлением и поддержанием оптимальных перепадов температур между средами в теплообменных аппаратах, оптимального перегрева пара на всасывающей стороне и определенной температуры на нагнетательной стороне компрессора.

Основные показатели работы холодильной установки – холодопроизводительность, расход электроэнергии, удельный расход электроэнергии, расход воды – зависят от температурного режима работы холодильной установки.

Наиболее часто встречающимися отклонениями, влияющими на экономичность и безопасность работы холодильной установки, являются:

пониженная температура кипения хладагента в испарительной системе;

повышенная температура конденсации пара в конденсаторе;

повышенная или чрезмерно высокая температура пара на нагнетательной стороне компрессора.

Пониженная температура кипения*.

Работа холодильной установки при пониженной температуре кипения, кроме последствий, указанных выше, может вызвать замерзание хладоносителя в испарителе, подмерзание охлажденных грузов, находящихся около охлаждающих приборов, увеличение усушки продуктов, а также ухудшение смазки фреоновых компрессоров.

Читайте также:
Если не заводится бензопила Штиль 180: инструкция

Температура кипения является самоустанавливающимся параметром. Величина ее определяется теплопритоком к испарителю, холодопроизводительностью компрессоров, интенсивностью теплообмена в испарителе и требуемой температурой охлаждаемого объекта.

Понижение температуры кипения происходит в том случае, когда при снижении тепловой нагрузки производительность включенных в работу компрессоров оказывается больше производительности охлаждающих приборов. В этом случае надо выключить часть компрессоров. При работе компрессоров с регулируемой производительностью необходимо включить автоматическую систему регулирования холодопроизводительности и следить за исправностью ее работы.

Понижение температуры кипения, вызванное ухудшением интенсивности теплообмена в испарителе, объясняется многими причинами.

При недостатке хладагента в системе происходит неполное заполнение испарителя, и часть его теплопередающей поверхности не используется. Основными признаками недостаточного количества хладагента являются низкий его уровень в линейном ресивере (или конденсаторе), а также периодическое оттаивание регулирующего вентиля при увеличении степени его открытия. В таком случае система должна быть пополнена хладагентом. Недостаточное количество хладагента в испарительной системе может явиться следствием неправильной регулировки его подачи. В этом случае необходимо обеспечить требуемое заполнение испарительной системы путем большего открытия регулирующего вентиля или соответствующей настройкой приборов автоматики.

Снеговая шуба, оседающая на наружной поверхности охлаждающих приборов, а также замасливание их внутренней поверхности значительно ухудшают теплообмен и приводят к пониженной температуре кипения. Проведение периодических оттаиваний охлаждающих приборов позволяет не только освобождать их от снеговой шубы, но и выпускать скопившееся масло. Причиной значительного ухудшения теплообмена воздухоохладителей может быть уменьшение скорости циркулирующего воздуха или полное прекращение его циркуляции из-за зарастания воздухоохладителя или воздуховодов снеговой шубой, неудачной конструкции системы циркуляции воздуха, неисправности вентиляторов или их электродвигателей.

При затопленных аммиачных испарителях (кожухотрубные, панельные испарители, коллекторные батареи и т. п.) температура кипения может понизиться в случае скопления в их нижней части большого количества масла, которое, занимая часть аппарата, уменьшает активную теплопередающую поверхность.

В аппаратах для охлаждения хладоносителя при недостаточной его концентрации на трубах испарителя происходит намерзание ледяной корочки, которая, являясь термическим сопротивлением, служит причиной понижения температуры кипения. Уменьшение циркуляции хладоносителя из-за значительного засорения трубопроводов, фильтров, выхода из строя насосов, мешалок или их электродвигателей также понижает температуру кипения.

Повышенная температура конденсации**.

Повышенная температура конденсации приводит к уменьшению холодопроизводительности установки, увеличению потребляемой мощности и снижению технико-экономических показателей ее работы.

Температура конденсации является самоустанавливающимся параметром. Величина температуры конденсации, при которой происходит самоустановление, зависит от производительности включенных компрессоров, теплопередающих свойств конденсатора и средней температуры охлаждающей среды. Снижение повышенной температуры конденсации может быть осуществлено способами, описанными выше. В некоторых случаях для снижения температуры конденсации у холодильной установки с воздушными конденсаторами при высоких температурах воздуха целесообразно производить разбрызгивание воды.

Повышенная температура конденсации при оборотном водоснабжении может быть вызвана неудовлетворительной работой водоохладительного устройства (градирни). Мероприятия, направленные на улучшение его работы, сводятся к увеличению подачи циркулирующей воды и улучшению ее распределения, а также к увеличению количества воздуха, проходящего через градирню.

Повышение давления конденсации может быть вызвано ухудшением теплопередачи в конденсаторах в результате:

исключения из активного теплообмена части поверхности конденсаторов из-за их переполнения жидким хладагентом (недостаточная емкость линейных ресиверов, переполнение системы или малая подача в испарительную систему);

наличия в конденсаторе неконденсирующихся примесей (воздух и продукты разложения масла);

уменьшения поверхности конденсаторов, по причине неправильно проведенного ремонта прохудившихся труб (заглушение их вместо замены новыми);

ухудшения теплообмена в связи с загрязнением поверхности труб водяным камнем, отложением ила, водорослей;

ухудшения распределения охлаждающей воды из-за загрязнения форсунок и распределителей у вертикальных, оросительных н испарительных конденсаторов.

В автоматизированных холодильных установках повышенное давление конденсации может быть вызвано дефектами работы водорегуляторов.

Повышенная температура пара после его сжатия в компрессоре.

Превышение действительной температуры нагнетаемого пара по сравнению с ее оптимальными значениями может явиться следствием повышенного перегрева*** всасываемого пара, чрезмерного понижения температуры кипения, плохого охлаждения и неисправностей компрессора, наличия в системе неконденсирующихся газов. Повышенный перегрев пара на всасывании зависит от недостаточной подачи хладагента в систему, большой протяженности всасывающих трубопроводов и плохого качества их теплоизоляции.

Наиболее часто встречаются следующие неисправности компрессора, вызывающие повышенную температуру нагнетания:

значительный износ цилиндра компрессора, вызывающий большой пропуск пара через поршневые кольца, а также неплотности нагнетательных или всасывающих клапанов;

недостаточная подача воды в охлаждающую рубашку компрессора или отложение водяного камня на его стенках, ухудшающее теплообмен через стенки рубашки;

нарушение смазки поверхности цилиндра и разогрев ее из-за повышенного трения поршневых колец о его стенки.

У компрессоров с обильной циркуляционной смазкой (винтовые и ротационные) температура пара после его сжатия зависит не столько от температуры всасываемого пара, сколько от температуры и количества впрыскиваемого масла.

Читайте также:
Дизайн рабочего кабинета: психология цвета

Влажный ход компрессора.

Влажный ход компрессора происходит при сжатии влажного пара. Это одна из наиболее опасных ненормальностей работы холодильных установок.

Температура жидкого хладагента при сжатии не повышается, поэтому происходит сильное охлаждение сжимаемой смеси, а также цилиндров и всей группы движения компрессора.

Первым признаком влажного хода компрессора является резкое снижение температуры конца сжатия. Сильное охлаждение компрессора может привести к замерзанию воды в охлаждающей рубашке и разрыву блока цилиндров. Повышение вязкости масла и уменьшение зазоров приводит к интенсивному износу компрессора. Резкое охлаждение цилиндра с температур около 130-150 °С до -20 ÷ -30 °С (при попадании в разогретый компрессор порции жидкого хладагента) может служить причиной так называемого теплового удара, в результате которого при наличии трещин в металле разрушается нагнетательная полость компрессора. Если количество жидкого хладагента превышает объем мертвого пространства компрессора, то возникает опасность гидравлического удара. Нагнетательные клапаны поршневого компрессора оказывают значительное сопротивление потоку жидкого хладагента, что приводит к чрезмерному повышению давления в цилиндре компрессора и возникновению разрушающих усилий на шатуннокривошипный механизм. Относительная величина мертвого объема поршневых компрессоров составляет около 2-4%. Геометрическое изменение объема пара винтовых и ротационных компрессоров находится в пределах 2,6-5,0. Поэтому к моменту соединения нагнетательной полости компрессора с выпускным окном объем этой полости составляет примерно 20-40% от первоначального. Кроме того, у винтовых и ротационных компрессоров сечение выпускных окон имеет большую площадь, чем сечение нагнетательных клапанов поршневых компрессоров. Поэтому они менее чувствительны к влажному ходу.

Признаки влажного хода компрессора:

отсутствие перегрева всасываемого пара;

снижение температуры нагнетаемого пара;

изменение звука работающего компрессора: звонкий стук клапанов переходит в глухой и в цилиндре появляются стуки;

обмерзание цилиндров и картера компрессора.

Основные причины, вызывающие попадание в компрессор влажного пара:

избыточная подача жидкого хладагента в испарительную систему;

вскипание жидкости в затопленных испарителях при резком снижении в них давления или при резком повышении тепловой нагрузки;

конденсация пара во всасывающем трубопроводе при длительной стоянке или низкой температуре воздуха и плохой теплоизоляции трубопровода.

Наличие мешков во всасывающих трубопроводах повышает опасность, при скапливании в них жидкого хладагента и масла в компрессор может попасть большая порция жидкости, приводящая к гидравлическому удару.

При возникновении влажного хода немедленно закрывают всасывающий вентиль компрессора и прекращают подачу жидкого хладагента в испарительную систему. Приоткрывать всасывающий вентиль следует так, чтобы в компрессоре не было стуков. Если в компрессор попало значительное количество жидкого хладагента и компрессор сильно обмерз, то в некоторых случаях целесообразно приоткрыть байпас, соединяющий всасывающую и нагнетательную линии. В этом случае в цилиндры будет поступать пар с более высокой температурой, чем из всасывающего трубопровода, и компрессор может быть быстрее приведен в рабочее состояние. Закрывать нагнетательный вентиль в этом случае категорически запрещается.

Фото 1. Фрагмент варианта внешнего вида фреоновой промышленной холодильной установки
на винтовом компрессоре “Bitzer” (Германия): (холодопроизводительность Q = 229 кВт при температуре кипения t = +5 °С и температуре конденсации tк = 45 °С)

* Температура кипения. Температуру кипения t определяют по мановакуумметру, присоединенному к всасывающему трубопроводу компрессора. При снижении температуры кипения холодопроизводительность установки снижается. Мощность, потребляемая компрессором, а зависимости от температуры кипения – может как увеличиваться, так и снижаться. В условиях, обычных для холодильных установок (t ≤ 10 °С, tк > 25 °С) с понижением температуры кипения мощность понижается, а в установках кондиционирования воздуха – повышается. Максимумы мощности соответствуют примерно Pk/p=3 [1].

Изменение температуры кипения на 1°С в среднем приводит к изменению холодопроизводительности компрессора на 4-5%, изменению потребляемой мощности на 2% и изменению удельного расхода электроэнергии на 2-3%.

Температурный напор, т. е. разность между температурой воздуха в охлаждаемом объекте и температурой кипения или хладоносителя, принимается в пределах 7-10 °C. Однако в некоторых случаях экономически оправданными являются как напоры 5 °С (камеры для фруктов), так и 12-20 °С (судовые и бытовые установки). Для испарителей, в которых производится охлаждение жидкостей, разность между средней температурой охлаждаемой жидкости и температурой кипения принимается в пределах 4-6 °С. Наиболее целесообразным с экономической точки зрения является температурный напор для аммиачных испарителей 3-4 °С, для фреоновых 4-5 °С [1].

** Температура конденсации. Температура конденсации tк определяется по температурной шкале манометра, измеряющего давление в конденсаторе.

Увеличение температуры конденсации на 1 °С приводит к снижению холодопроизводительности на 1-2%, увеличению мощности на 1-1,5% и возрастанию удельного расхода электроэнергии на 2-2,5%.

Разность между температурой конденсации и средней температурой воды принимается в пределах 4-6 °С, что соответствует температуре конденсации на 2-4 °С, превышающей температуру отходящей из конденсатора воды. Имеется тенденция к снижению температурного перепада; в аммиачных кожухотрубных конденсаторах этот перепад следует принимать равным от 2 до 3 °С.

Читайте также:
Как использовать подоконник на кухне (65 фото)

Нагрев воздуха в воздушных конденсаторах принимается равным 5-6 °С, а температурный перепад в пределах от 6 до 9 °С. Меньшее значение этого перепада соответствует большей стоимости электроэнергии, и наоборот.

*** Во фреоновых холодильных установках, оборудованных теплообменниками, перегрев пара на всасывающей стороне находится в пределах от 10 до 45 °С. Для низкотемпературных холодильных установок, снабженных несколькими теплообменниками, этот перегрев может быть значительно выше. Перегрев пара хладагента в испарителе в большинстве случаев нежелателен, однако в испарителях с ТРВ (в малых холодильных машинах) устанавливается минимальный перегрев, необходимый для работы ТРВ (3-4 °С) [1].

1. Эксплуатация холодильников. Быков А.В. Изд-во “Пищевая промышленность”, 1977 г.

Мастера Холода

Текущее время: 19-10, 21:41

Часовой пояс: UTC + 3 часа

Заправка/настройка системы (сp)

Разные типы дозирующих устройств (дросселей) используют разный тип заправки. Термо-расширительные вентили (ТРВ) должны быть заправлены по переохлаждению жидкости попадающей конденсатор. Дроссели с фиксированным отверстием (капиллярка) заправляются по перегреву отсасывающей трубки выходящей из испарителя. Чтобы разобраться почему это так, необходимо разобраться в физических свойствах холодильного цикла. Четыре основные компонента цикла включают в себя:

Компрессор
Конденсатор
Дроссель
Испаритель

Опишем каждый из них в отдельности.

Компрессор

Компрессор сжимает перегретый газ низкого давления в перегретый газ высокого давления. Если всасываемый газ не является перегретым, то компрессор может быть повреждён. Компрессор выталкивает газ из испарителя и толкает в конденсатор. Процесс компрессии совершается одним из следующих типов компрессоров: поршневой, ротационный, спиральный, винтовой, центробежный и звуковой (:-o). Первые 2 типа наиболее часто используются в кондиционировании (и фреонкостроении тоже ).

Процесс компрессии повышает температуру и давление хладагента (далее ха). Результатом повышения температуры является перегрев. Температура хладагента должны быть выше, чем температура конденсации. Температура должна быть выше, чтобы тепло могло перетечь в конденсирующую среду. Если бы температура не была бы повышена в процессе компрессии, то не было бы обмена темпом между окружающей средой и ха. Максимальная температура на входе компрессора – 20С, на выходе – 110C. Всасываемый газообразный ха охлаждает двигатель компрессора.

Предохлаждение ха начинается сразу на линии нагнетания после выхода из компрессора.

Конденсатор

Конденсатор отводит тепло и превращает пар высокого давления в жидкость высокого давления. Это происходит из-за того, что перегретый газ (высокого давления) входящий в конденсатор охлаждается так, что его температура падает до температуры насыщения.

Ха не начинает менять свое агрегатное состояние пока его температура не достигнет температуры насыщения. Единственная вещь, которая может изменить эту температуру конденсации – это давление конденсации. В точке насыщения мы попадаем в стадию фазового перехода. Фазовый переход – это отсутствие изменений температуры. В этот момент происходит процесс смены фазового состояния, который продолжается пока ха находится в насыщенном состоянии (т.е. перегрев 0 и переохлаждение 0). В момент фазового перехода жидкость и газ одной температуры. Это называется “устойчивый контакт”. Температура жидкости и газа будет одинаковой пока температура ха не опустится ниже насыщенной. Тогда 98%-99% ха станет жидкостью. Это называется переохлаждение. Переохлаждение – это температура ниже насыщенной. Переохлаждение – это мера количества жидкости в конденсаторе. Маленькое переохлаждение означает, что конденсатор пуст. Большое переохлаждение означает, что конденсатор полный. Перезаправка системы поднимает давление конденсации из-за того, что жидкость накапливается в конденсаторе. Если в жидкостной линии (после конденсатора) произойдёт падение давления и ха не был переохлаждён, то он насчёт испаряться до достижения дросселя.

Дроссель

Дроссель – это точка падения давления, которая выполняет 2 функции:
1) поддерживает уровень ха в конденсаторе
2) подаёт ха в испаритель

Когда жидкость высокого давления входит в дроссель давление начинает падать, в то время как температура остаётся постоянной пока не достигнет уровня насыщенной. Начиная с этого момента давление и температура починают падать вместе пока не достигнут насыщенной температуры-давления испарения. Итак, из дросселя выходит кипящий жидкий ха. Процесс смены фазового состояния ха в дросселе называется “мгновенно выделяющийся газ”. “Мгновенно выделяющийся газ” – это то, что охлаждает жидкий хладагент в дросселе. Чем меньше переохлаждение, тем больше мгновенно выделяющегося газа, тем хуже для производительности системы.

Испаритель

Ха входит в испаритель как кипящая жидкость низкого давления, находящаяся в насыщенном состоянии. Ха кипит при одной и той же температуре, если не происходит изменения давления. В насыщенном состоянии ха поглощает теплоту. Ха совершает фазовый переход при постоянной температуре (при каком-то давлении) от начала испарителя до того момента, пока поступившая жидкость не превратится в газ. В момент фазового перехода жидкость и пар находятся в одной температуре из-за устойчивого контакта. Когда тепло добавляется в газ после состояния насыщенности, то это называется перегрев. Перегрев это мера того, насколько испаритель полон жидкости. Большой перегрев означает, что испаритель пуст. Маленький перегрев означает, что испаритель полон. По некоторым данным, ха продолжает кипеть даже когда перегрев составляет 2 градуса. Перегрев не должен быть ниже 4 градусов, иначе могут быть проблемы с компрессором. Перегретый газ поступает в компрессор и цикл повторяется заново.

Читайте также:
Замена автосигнализации своими руками - основные этапы монтажа

Системы с разными типами дозирующих устройств должны заправляться по-разному.

ТРВ

Система с ТРВ заправляется по переохлаждению жидкости, выходящей из конденсатора, т.к. перегрев фиксирован. В кондиционерах перегрев зафиксирован на
уровне 8-12 градусов. Переохлаждение – это количество ха в конденсаторе. Оно позволяет жидкости отдавать тепло ниже насыщенной температуры. Каждый градус переохлаждения при том же давлении конденсации – это увеличение производительности на 0.5%. Увеличение переохлаждения вместе с увеличением давления конденсации уменьшает производительность. Расчёт такой – 5 градусов переохлаждения на 10м жидкостной линии (нам это пока не грозит ).

Чтобы измерить переохлаждение нужно:
1) Давление жидкостной линии перевести в температуру с помощью таблицы (получаем насыщенную температуру конденсации SCT – saturated condensing temperature).
2) Померить температуру жидкости на выходе из конденсатора (LLT – liquid line temperature).
3) Вычесть вторую из первой (condenser outlet subcooling=SCT-LLT).

Система с ТРВ со смотровым стеклом заправляется по переохлаждению или пока смотровое стекло не станет ясным (без пузырей). В зависимости от того, что произойдёт первым.

Дроссель с фиксированным отверстием (капиллярка)

Система с капилляркой заправляется по перегреву на линии всасывания. Перегрев – это температура газа выше насыщенной.

Чтобы измерить перегрев нужно:
1) Давление на линии всасывания перевести в температуру с помощью таблиц (получаем насыщенную температуру испарения SST – saturated suction temperature).
2) Померить температуру отсасывающей трубки на выходе из испарителя (SLT – suction line temperature).
3) Вычесть первую из второй (compressor inlet superheat=SLT-SST).

Заключение

ТРВ создан для поддержания постоянного перегрева. Перезаправка влечёт повышение переохлаждения, увеличение давлений и уменьшает производительность. Недозаправка с ТРВ влечёт уменьшение переохлаждения, увеличение перегрева, уменьшение производительности и уменьшение скорости ха, вследствие чего он будет оставлять масло в испарителе.

Систему с капилляркой, которая является простейшим дроссельным устройством, заправлять сложнее всего. Перезаправка уменьшает перегрев, увеличит давления, уменьшит эффективность и зальёт компрессор жидким ха. Недозаправка увеличит перегрев, уменьшит давления, уменьшит производительность и уменьшит скорость ха, вследствие чего он будет оставлять масло в испарителе.

Перед тем как измерять перегрев и переохлаждение нужно дать системе минут 10-20, чтобы стабилизоваться после заправки.

Последний раз редактировалось serj666 06-04, 20:42, всего редактировалось 2 раз(а).

serj666

Я вот про ТРВ не очень понял. Мы настраиваем по переохлаждению из расчёта на 8-12 градусов?
На самом деле здесь ещё такая штука, что если использовать какие-либо дополнительные ТО и SLHX (ну или банально, когда обкручиваем капилляркой отсасывающую трубку), то переохлаждение надо в другом месте мерить. В итоге мне кажется, что перед дросселем мерить нужно, хотя это чисто умозрительные заключения. Надо соответствующее тестирование провести, но сложно это.

Часовой пояс: UTC + 3 часа

Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей и гости: 0

Какие жалюзи лучше: пластиковые или алюминиевые?

Жалюзи устанавливают для защиты от солнечных лучей и любопытных взглядов. Такие изделия должны отвечать некоторым требованиям, чтобы их использование приносило комфорт и не создавало проблем. Первый и важный фактор – это экологичность. Второй – удобство в применении, ламели должны легко открываться и закрываться, легко мыться.

Какие бывают жалюзи?

Наиболее распространенные варианты жестких жалюзи – это алюминиевые, пластиковые и деревянные. Последние предпочтительнее прочих, но их высокая цена не всем по карману. Поэтому владельцы апартаментов, выходящих на солнечную сторону, задаются вопросом «Какие жалюзи лучше, пластиковые или алюминиевые?»

Для начала выберем тип изделия – они бывают вертикальные и горизонтальные. Если нужен бюджетный вариант – лучше остановиться на последних. Вертикальные модели больше подходят для больших окон и помещений, горизонтальные будут лучше смотреться на стандартных или узких окнах, в комнате с небольшой площадью. Что касается материала, то каждый имеет свои особенности.

Алюминиевые жалюзи

Изделия из металла будут стоить дороже пластиковых и их вес больше. Остальные качества алюминиевых жалюзи относятся к достоинствам:

  • Высокая прочность, долговечность;
  • Устойчивость к воспламенению;
  • Возможность мытья любыми моющими средствами.
Читайте также:
Самодельная бетономешалка своими руками, виды и процесс изготовления бетономешалок из бочки и стиральной машины

Такие модели следует выбрать для установки в офисах, общественных организациях, а также для монтажа на тех окнах или витринах, которые большую часть светового дня находятся под прямыми солнечными лучами.

Алюминиевые горизонтальные жалюзи к содержанию ↑

Пластиковые жалюзи

Полимерные материалы имеют ряд достоинств, которые способны радикально изменить интерьер помещения:

  • Огромный выбор расцветок, в том числе с узорами и орнаментами;
  • Возможность нанесения на них фотографий или рисунков;
  • Можно выбрать изделия с разным уровнем светопроницаемости – от полного затемнения в закрытом виде до рассеянного света.

Решая вопрос, какие жалюзи купить – алюминиевые или пластиковые, следует принять во внимание стоимость последних. Полимерные позволят сэкономить значительную сумму, но приобрести практичное изделие. Легкий вес жалюзи с полимерными планками позволяет крепить их к любой основе. Ламели таких изделий отличаются высокой гибкостью, это сохранит их целостность при сильной нагрузке.

Главным недостатком таких изделий является их горючесть, поэтому при их использовании придется соблюдать строгие меры пожарной безопасности. Кроме этого, при сильном нагреве некоторые полимеры могут выделять токсичные вещества. Учитывая то, что они будут расположены под солнечными лучами, это может быть небезопасным.

Пластиковые горизонтальные жалюзи к содержанию ↑

Делаем выводы, что лучше: пластиковые или алюминиевые

Если стоит задача закрыть окно от посторонних взглядов или же установить их на слабо освещаемой солнцем стороне дома – то, в общем, нет никакой разницы, какие это будут жалюзи – пластиковые или алюминиевые. Весь вопрос стоит в цене, а его каждый хозяин волен решать по своему усмотрению.

В случае, когда солнцезащитная конструкция будет подвергаться сильному нагреву, частому мытью или существует риск механического повреждения, ответ однозначен: лучше купить алюминиевые жалюзи. Кроме того, полимерные изделия лучше не вешать в детской комнате, ведь они могут выделять токсины, опасные для здоровья. Некоторые пластмассы быстро разрушаются под действием УФ-лучей, поэтому такой вариант может оказаться недолговечным.

Оба типа изделий имеют свои негативные и положительные качества, но окончательный выбор можно сделать, только зная все нюансы их использования. В разных помещениях, при разных условиях достоинство обернется недостатком, а то, что казалось минусом – станет весомым преимуществом.

Алюминий или пластик: какие жалюзи лучше и почему

Итак, ремонт квартиры или дома закончен. Вы продумываете, какими нарядными аксессуарами снабдить окна вашего жилища в целом или в отдельных его помещениях. Допустим, вы остановили свой выбор на жалюзи. Нужно решить, какие конкретно будут жалюзи, какие лучше подойдут для вашей квартиры или дома.

Жалюзи – хороший выбор: современный, практичный, минималистичный, гигиеничный, удобный в уходе вариант. Вписываются во многие интерьерные стили, с учетом выбора материала изготовления, дизайна и иногда с использованием текстильных дополнений. Но вы пока не сделали выбор, какими будут ваши жалюзи: алюминиевые или пластиковые? Или и те, и другие в разных комнатах?

В этой статье мы рассматриваем жалюзи только по двум видам материалов, из которых производятся жалюзи. Практик нам расскажет о том, какие жалюзи лучше: алюминиевые или пластиковые?

  1. Какие жалюзи лучше — пластиковые или алюминиевые?
  2. Дизайн
  3. Защита от солнца
  4. Плюсы и минусы при уходе
  5. Какие жалюзи надежнее – ПВХ или алюминий
  6. Стоимость
  7. Ключевые отличия между алюминиевыми и пластиковыми жалюзи
  8. Выводы
  9. Достоинства и недостатки
  10. Что нужно сделать, выбирая жалюзи

Какие жалюзи лучше — пластиковые или алюминиевые?

Напомним, что жалюзи представляют собой конструкцию, состоящую из крепежной основы, к которой прикрепляются пластиковые или алюминиевые планки (ламели), соединяющиеся между собой с помощью цепочек или прочных утолщенных нитей либо тонких шнуров. Жалюзи бывают с вертикальным и горизонтальным расположением планок. Используются для затенения помещений от солнечных лучей и защиты от уличных зевак, могут крепиться на пластиковые и деревянные окна.

Рассмотрим основные свойства жалюзи, чтобы сравнить, какие же модели лучше, удобнее, практичнее, красивее.

Дизайн

Чисто внешне многим пользователям нравятся пластиковые жалюзи (ПВХ). Они нарядные, опрятные, «не утяжеляют» окно и хорошо смотрятся в интерьере, особенно вместе с легким тюлем или прозрачными шторами.

Алюминиевые в этом плане проще на вид, не создают ощущения домашнего уюта, более заметны на окне. Чаще всего они используются в офисах. Для того, чтобы они гармонично вписались в интерьер квартиры, зачастую требуется дополнительное текстильное оформление для смягчения грубоватых и простоватых очертаний алюминиевых конструкций.

Окраска и узоры:

  • алюминиевые чаще всего бывают белого, светло-серого цвета либо под цвет дерева (цвет ореха), а пластик имеет более разнообразные варианты окраски (оттенки всей цветовой гаммы), и в многообразии цвета – его ощутимое преимущество;
  • пластик включает краситель в состав материала, а у алюминиевых окрашивается поверхность;
  • и те, и другие могут быть с принтами, тиснеными узорами, перфорацией;
  • окраска пластика, со временем и под воздействием солнечных лучей (особенно на солнечной стороне) может потускнеть, пожелтеть, а на окраске алюминия не сказывается длительная эксплуатация и прямые солнечные лучи.

Привлекательность внешнему виду жалюзи (в частности, алюминиевым) можно обеспечить с помощью дополнительного оформления текстилем.

Защита от солнца

Если важно, какие изделия лучше закрывают окна, то выбор – за алюминиевыми. У них тонкие и плоские планки, которые плотно примыкают друг к другу без щелей. Они хорошо закрывают от солнечных лучей в жаркий день и не дают любопытным заглянуть в окно извне.

Алюминиевые жалюзи более шумные, по сравнению с пластиком, они шелестят при движении и звучно хлопают при смыкании планок.

Особенности пластика в конструктиве. Ламели более утолщенные (по сравнению с алюминиевыми), со скругленными краями, что не позволяет им плотно примкнуть друг к другу, они располагаются относительно друг друга под небольшим углом и недостаточно плотно закрывают окно. Это обстоятельство позволяет солнечному свету проникать через щели.

Читайте также:
Замена автосигнализации своими руками - основные этапы монтажа

Плюсы и минусы при уходе

Мыть жалюзи в целом не сложно, но порой хлопотно и с немалыми затратами времени. Если сравнить, какие лучше в уборке, то, скорее всего, ПВХ. Но только при условии очень аккуратных действий, чтобы не повредить хрупкие ламели и цепочки подъемного механизма.

Плюсы пластиковых:

  • с пластиковых планок проще и быстрее смывается грязь, копоть, пыль, следы насекомых (даже без химии);
  • пластиковые планки не прилипают друг к другу при протирании после мытья насухо от остатков воды;
  • на пластике не появляются следы заломов при сгибании;
  • ламель из пластика мыть удобнее и безопаснее, потому что она толще, чем алюминиевая.

Минус пластиковых:

  • легко можно сломать, если чуть перегнуть ламель или слишком сильно надавить, что при уборке вполне вероятно.

Плюсы алюминиевых:

  • не требуется частый уход: раз в 2 – 3 месяца протирать их сухой тканевой салфеткой, и раз в год – обработка влажной губкой или с помощью специального приспособления для мытья (см. фото ниже).

Минусы алюминиевых:

  • у ламелей довольно острые края и можно поранить руку, если быстро провести тряпкой, зажав ламель между пальцами;
  • влажные ламели слипаются, приходится встряхнуть все полотно, чтобы они разъединились, но от этого могут появиться заломы;
  • из-за слишком плотного прилегания друг к другу приходится несколько раз чистить одну планку в разных положениях.

Важно не допускать сильного загрязнения алюминиевых жалюзи, потому что оттирать гнущиеся планки будет затруднительно.

Какие жалюзи надежнее – ПВХ или алюминий

Многие пользователи склоняются к тому, что алюминиевые жалюзи надежнее пластиковых. Планки тонкие и легко гнутся во время уборки, и если задеть рукой, то могут быть заломы, но зато они не растрескиваются, как пластиковые.

По отзывам, многим не нравится пластик именно за хрупкость и ломкость. Слабые места – возле оконной ручки. Во время проветривания комнаты в морозный день пластик охлаждается и возле щели на улицу становится хрупким и ломается при небольшом нажиме.

Тонкие алюминиевые планки могут погнуться, на них могут появиться заломы, может уменьшиться привлекательность внешнего вида, но сохраняется целостность ламелей, и жалюзи в целом продолжают функционировать.

Стоимость

Уместно будет вспомнить про цену, это тоже показатель, какие жалюзи лучше – алюминиевые или пластиковые.

ПВХ стоят дешевле, потому что срок их службы меньше из-за качественных характеристик: ломаются, выцветают, недостаточно плотно закрывают окно. Но они имеют право на существование. Судя по отзывам, многие пользователи ставят такие жалюзи в дополнение к обычным шторам. Кроме того, если такие жалюзи надоедают, то их невысокая стоимость позволяет без особых сожалений заменить на новые с другим дизайном. Бывает, что в необходимых случаях их используют в технических и нежилых помещениях – подвалах, подъездах, гаражах, котельных в частных домах – так можно сэкономить.

Алюминиевые более долговечные, поэтому и стоить будут дороже.

Так что здесь налицо действие принципа «лучше качество – выше цена». И каждый пользователь сам выбирает то, что для него более важно, с учетом характеристик обоих видов жалюзи по всем указанным параметрам материалов, из которых они изготавливаются.

Ключевые отличия между алюминиевыми и пластиковыми жалюзи

В целом, у этих типов жалюзи сходная основа – карниз, крепления, прочная тесьма, бегунки, грузики, и только планки (ламели) выполнены из разного материала.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: