Радиация солнечная инфракрасная

Солнечная радиация и её влияние на организм человека и климат

Слепящий солнечный диск во все времена будоражил умы людей, служил благодатной темой для легенд и мифов. Ещё с древности люди догадывались о его воздействии на Землю. Как близки были наши далёкие предки к истине. Именно лучистой энергии Солнца мы обязаны существованием жизни на Земле.

Что же представляет собой радиоактивное излучение нашего светила и как оно воздействует на земные процессы?

Что такое солнечная радиация

Солнечная радиация — это совокупность солнечной материи и энергии, поступающей на Землю. Энергия распространяется в виде электромагнитных волн со скоростью 300 тысяч километров в секунду, проходит через атмосферу и достигает Земли за 8 минут. Диапазон волн, участвующих в этом «марафоне», весьма широк — от радиоволн до рентгеновских лучей, включая видимую часть спектра. Земная поверхность находится под воздействием как прямых, так и рассеянных земной атмосферой, солнечных лучей. Именно рассеянием в атмосфере сине-голубых лучей объясняется голубизна неба в ясный день. Жёлто-оранжевый цвет солнечного диска обусловлен тем, что соответствующие ему волны проходят почти без рассеивания.

С запозданием на 2–3 суток земли достигает «солнечный ветер», представляющий собой продолжение солнечной короны и состоящий из ядер атомов лёгких элементов (водорода и гелия), а также электронов. Вполне естественно, что солнечная радиация оказывает сильнейшее влияние на организм человека.

Влияние солнечной радиации на организм человека

Электромагнитный спектр солнечной радиации состоит из инфракрасной, видимой и ультрафиолетовой частей. Поскольку их кванты обладают различной энергией, то они оказывают разнообразное действие на человека.

Результатом воздействия инфракрасного излучения является тепловой эффект, который сопровождается расширением кровеносных сосудов, усилением кровотока и кожного дыхания. Происходит расслабление сосудов и мышц, обладающее болеутоляющим и противовоспалительным эффектом. Мягкое тепло стимулирует образование и усвоение биологически активных веществ.

  • Видимое излучение оказывает значительное фотохимическое действие, благодаря которому в окружающих тканях происходят весьма важные для организма процессы. Именно кванты видимого света активизируют работу зрительного анализатора, и человек видит мир во всём многообразии красок. Солнечный свет активизирует обменные процессы в организме, стимулирует работу коры головного мозга, улучшает эмоциональное состояние человека. Именно свет синхронизирует суточные и сезонные ритмы у человека, определяя время сна и бодрствования. Их нарушение приводит к бессоннице, ухудшению трудоспособности и депрессии.
  • Ультрафиолетовая часть является жизненно важным фактором. Её недостаток приводит к ослаблению иммунитета, обострению хронических заболеваний и функциональным расстройствам нервной системы, тормозит выработку жизненно необходимых веществ.
  • Чрезвычайно велико и гигиеническое значение солнечной радиации. Поскольку видимый свет является решающим фактором в получении информации о внешнем мире, в помещении необходимо обеспечивать достаточный уровень освещённости. Его регламентирование производится согласно СНиП, которые для солнечной радиации составляются с учётом свето-климатических особенностей различных географических зон и учитываются при проектировании и строительстве различных объектов.

    Даже поверхностный анализ электромагнитного спектра солнечного излучения доказывает, как велико влияние этого вида радиации на организм человека.

    Распределение солнечного излучения по территории Земли

    Далеко не всё излучение, идущее от Солнца, достигает поверхности земли. И причин для этого немало. Земля стойко отражает атаку тех лучей, которые губительны для её биосферы. Эту функцию выполняет озоновый щит нашей планеты, не пропуская наиболее агрессивную часть ультрафиолетового излучения. Атмосферный фильтр в виде водяного пара, углекислого газа, взвешенных в воздухе пылевых частиц — в значительной степени отражает, рассеивает и поглощает солнечное излучение.

    Та его часть, которая преодолела все эти преграды, падает на поверхность земли под разными углами, зависящими от широты местности. Живительное солнечное тепло распределяется по территории нашей планеты неравномерно. По мере изменения высоты стояния солнца в течение года над горизонтом изменяется масса воздуха, через которую пролегает путь солнечных лучей. Все это оказывает влияние на распределение интенсивности солнечного излучения по территории планеты. Общая тенденция такова — этот параметр увеличивается от полюса к экватору, так как чем больше угол падения лучей, тем больше тепла попадает на единицу площади.

    Карты солнечной радиации позволяют иметь картину распределения интенсивности солнечного излучения по территории Земли.

    Влияние солнечной радиации на климат Земли

    Решающее влияние на климат Земли оказывает инфракрасная составляющая солнечной радиации.

    Понятно, что это происходит лишь в то время, когда Солнце находится над горизонтом. Это влияние зависит от удалённости нашей планеты от Солнца, которое изменяется в течение года. Орбита Земли представляет собой эллипс, внутри которого и находится Солнце. Совершая свой годичный путь вокруг Солнца, Земля то удаляется от своего светила, то приближается к нему.

    Читайте также:
    Как приклеить присоску на кафель: полезные советы

    Кроме изменения расстояния, количество поступающей на землю радиации, определяется наклоном земной оси к плоскости орбиты (66,5°) и вызываемой ею сменой времён года. Летом она больше, чем зимой. На экваторе этого фактора нет, но по мере роста широты места наблюдения, разрыв между летом и зимой становится значительным.

    В процессах, происходящих на Солнце, имеют место всевозможные катаклизмы. Их воздействие отчасти нивелировано огромными расстояниями, защитными свойствами земной атмосферы и магнитным полем Земли.

    Как защититься от солнечной радиации

    Инфракрасная составляющая солнечного излучения — это вожделенное тепло, которого жители средних и северных широт с нетерпением ожидают все остальные сезоны года. Солнечной радиацией как оздоровительным фактором, пользуются как здоровые, так и больные.

    Однако, нельзя забывать, что тепло так же, как и ультрафиолет, относится к очень сильным раздражителям. Злоупотребление их действием может привести к ожогу, общему перегреву организма, и даже к обострению хронических заболеваний. Принимая солнечные ванны, следует придерживаться проверенных жизнью правил. Особенно осторожно следует загорать в ясные солнечные дни. Грудным детям и пожилым людям, больным с хронической формой туберкулёза и проблемами с сердечно-сосудистой системой, следует довольствоваться рассеянным солнечным излучением в тени. Этого ультрафиолета, вполне достаточно для удовлетворения нужд организма.

    Даже молодым людям, не имеющих особых проблем со здоровьем, следует предусмотреть защиту от солнечной радиации.

    Сейчас появилось движение, активисты которого выступают против загара. И не напрасно. Загорелая кожа, несомненно, красива. Но меланин, вырабатываемый организмом (то что мы называем загаром) — это его защитная реакция на воздействие солнечного излучения. Пользы от загара нет! Есть даже сведения, что загар укорачивает жизнь, так как радиация имеет кумулятивное свойство — она накапливается в течении всей жизни.

    Если дело обстоит так серьёзно, следует скрупулёзно соблюдать правила, предписывающие как защититься от солнечной радиации:

    • строго ограничивать время для загара и делать это лишь в безопасные часы;
    • находясь на активном солнце, следует носить широкополую шляпу, закрытую одежду, солнцезащитные очки и зонт;
    • использовать только качественный солнцезащитный крем.

    Во все ли времена года солнечная радиация опасна для человека? Количество поступающего на землю солнечного излучения связано со сменой времён года. На средних широтах летом оно на 25% больше чем зимой. На экваторе этой разницы нет, но по мере роста широты места наблюдения — это различие возрастает. Это происходит из-за того, что наша планета по отношению к солнцу наклонена под углом в 23,3 градуса. Зимой оно находится низко над горизонтом и освещает землю лишь скользящими лучами, которые меньше прогревают освещаемую поверхность. Такое положение лучей вызывает их распределение по большей поверхности, что снижает их интенсивность по сравнению с летним отвесным падением. Кроме того, наличие острого угла при прохождении лучей через атмосферу, «удлиняет» их путь, заставляя терять большее количество тепла. Это обстоятельство снижает воздействие солнечной радиации зимой.

    Солнце — звезда, являющаяся для нашей планеты источником тепла и света. Она «управляет» климатом, сменой времён года и состоянием всей биосферы Земли. И только знание законов этого могучего воздействия, позволит использовать этот живительный дар на благо здоровья людей.

    Виды солнечного излучения

    La солнечная радиация Это довольно важная переменная, которая служит для определения количества тепла, которое мы получаем от Солнца на поверхности земли. В зависимости от некоторых факторов, таких как ветер, облачность и время года, мы получаем большее или меньшее количество солнечной радиации. Он обладает способностью нагревать поверхность земли и предметы, не нагревая при этом воздух. Есть разные типы солнечного излучения в зависимости от происхождения и характеристик.

    Знайте все о солнечном излучении, о его типах и о том, какое влияние оно оказывает на планету и жизнь.

    Что такое солнечная радиация

    Это поток энергии, который получает солнце в виде электромагнитных волн разной частоты. Среди частот, которые мы находим в электромагнитном спектре, наиболее известны видимый, инфракрасный и ультрафиолетовый свет. Мы знаем, что почти половина солнечной радиации, которую получает наша планета, имеет частота находилась в диапазоне от 0.4 мкм до 0.7 мкм. Этот тип излучения может быть обнаружен человеческим глазом, и это то, что составляет полосу, известную нам как видимый свет.

    Другая половина находится в основном в инфракрасной части спектра и небольшая часть в ультрафиолете. Чтобы иметь возможность измерить, сколько излучения мы получаем от солнца Используется инструмент, известный как пиранометр.

    Читайте также:
    Как отремонтировать перфоратор Makita HR 2450, если пропал ударный режим

    Виды солнечного излучения

    В зависимости от происхождения и характеристик солнечного излучения бывают разные виды. Мы собираемся сосредоточиться на определении различных типов и их основных характеристик:

    Прямое солнечное излучение

    Это о том, что он исходит прямо от солнца и мало меняет направление. Это можно увидеть под влиянием ветра, но не в значительной степени. В ветреные дни можно почувствовать снижение жары. На поверхностях жара не так сильно действует при сильном ветровом режиме. Этот тип излучения имеет главную характеристику, а именно то, что он может отбрасывать определенную тень от любого непрозрачного объекта, который его перехватывает.

    Рассеянное солнечное излучение

    Это часть излучения, которое доходит до нас от солнца и которое отражается или поглощается облаками. Он известен под названием диффузный, поскольку распространяется во всех направлениях. Этот процесс происходит из-за отражений и поглощений не только от облаков, но и от некоторых частиц, плавающих в атмосфере. Эти частицы называются атмосферной пылью и способны рассеивать солнечное излучение. Его также называют диффузным, поскольку он отражается некоторыми объектами, такими как горы, деревья, здания и сама земля, в зависимости от ее состава.

    Основная характеристика этого излучения состоит в том, что он не отбрасывает тень на вставленные непрозрачные объекты. Горизонтальные поверхности – это те места, где присутствует большее количество рассеянного излучения. С вертикальными поверхностями происходит обратное, так как контакт практически отсутствует.

    Отраженное солнечное излучение

    Это тот, который отражает поверхность земли. Не все излучение, которое доходит до нас от солнца, поглощается поверхностью, но часть его отклоняется. Это количество излучения, которое отклоняется от поверхности, известно как альбедо. Альбедо Земли сильно увеличивается из-за изменения климата и таяния полярных ледяных шапок.

    Горизонтальные поверхности не получают отраженного излучения любого типа, так как они не видят земную поверхность. Противоположное дело обстоит с рассеянным солнечным излучением. В таком случае, именно вертикальные поверхности получают наибольшее количество отраженного излучения.

    Глобальная солнечная радиация

    Можно сказать, что это общая радиация, существующая на планете. Это сумма трех излучений. названный выше. Возьмем для примера полностью солнечный день. Здесь будет прямое излучение, которое превосходит диффузное излучение. Однако в пасмурный день не будет прямой радиации, но все попадание будет рассеянным.

    Как это влияет на жизнь и планету

    При таком количестве солнечного излучения, которое получает наша планета, жизнь не могла бы возникнуть так, как она возникла. Энергетический баланс Земли равен 0. Это означает, что количество солнечной радиации, которую получает планета, и то, что она излучает обратно в космос, одинаково. Однако необходимо добавить некоторые нюансы. В этом случае температура на планете будет -88 градусов. Итак, вам нужно что-то, что может удерживать это излучение и делать уровни температуры комфортными и обитаемыми, чтобы поддерживать жизнь.

    Парниковый эффект – это двигатель, который помогает солнечной радиации, падающей на земную поверхность, в значительной степени удерживаться. Благодаря парниковому эффекту на нашей планете могут появиться условия для жизни. Когда солнечная радиация попадает на поверхность, она почти наполовину возвращается в атмосферу, чтобы выбросить ее в космическое пространство. Часть этого излучения обратно от поверхности поглощается и отражается облаками и атмосферной пылью. Однако этого количества поглощенного излучения недостаточно для поддержания стабильной температуры.

    Вот где появляются парниковые газы. Это различные газы, которые способны удерживать часть тепла, излучаемого земной поверхностью, возвращая достигнутое солнечное излучение обратно в атмосферу. К парниковым газам относятся: водяной пар, диоксид углерода (CO2), оксиды азота, оксиды серы, метан, так далее. С увеличением количества парниковых газов, вызванных деятельностью человека, солнечная радиация становится все более вредной, поскольку оказывает воздействие на окружающую среду, флору, фауну и людей.

    Сумма всех видов солнечной радиации – это те, которые позволяют жизнь на планете. Будем надеяться, что проблему увеличения выбросов парниковых газов удастся решить и ситуация не станет опасной.

    Содержание статьи соответствует нашим принципам редакционная этика. Чтобы сообщить об ошибке, нажмите здесь.

    Полный путь к статье: Сетевая метеорология » Метеорология » Виды солнечного излучения

    Солнечная радиация или ионизирующее излучение солнца

    Солнце – источник света и тепла, в котором нуждается все живое на Земле. Но помимо фотонов света, оно излучает жесткую ионизирующую радиацию, состоящую из ядер и протонов гелия. Почему так происходит?

    Читайте также:
    Узнайте, как правильно стирать и сушить шерстяные шарфы, платки и палантины

    Причины возникновения солнечного излучения

    Солнечная радиация образуется в дневные часы во время хромосферных вспышек – гигантских взрывов, происходящих в атмосфере Солнца. Часть солнечного вещества выбрасывается в космическое пространство, образуя космические лучи, главным образом состоящие из протонов и небольшого количеств ядер гелия. Эти заряженные частицы спустя 15-20 минут после того, как солнечная вспышка становится видимой, достигают поверхности земли.

    Воздух отсекает первичное космическое излучение, порождая каскадный ядерный ливень, который затухает с понижением высоты. При этом рождаются новые частицы – пионы, которые распадаются и превращаются в мюоны. Они проникают в нижние слои атмосферы и попадают на землю, зарываясь вглубь до 1500 метров. Именно мюоны отвечают за образование вторичного космического излучения и естественной радиации, воздействующей на человека.

    Спектр солнечного излучения

    Спектр солнечного излучения включает как коротковолновые, так длинноволновые области:

    • гамма-лучи;
    • рентгеновское излучение;
    • УФ-радиацию;
    • видимый свет;
    • инфракрасную радиацию.

    Свыше 95% излучения Солнца приходится на область «оптического окна» – видимого участка спектра с прилегающими областями ультрафиолетовых и инфракрасных волн. По мере прохождения через слои атмосферы действие солнечных лучей ослабляется – вся ионизирующая радиация, рентгеновские лучи и почти 98% ультрафиолета задерживаются земной атмосферой. Практически без потерь до земли доходит видимый свет и инфракрасное излучение, хотя и они частично поглощаются молекулами газов и частицами пыли, находящимися в воздухе.

    В связи с этим, солнечное излучение не приводит к заметному повышению радиоактивного излучения на поверхности Земли. Вклад Солнца вместе с космическими лучами в формирование общей годовой дозы облучения составляет всего 0,3 мЗв/год. Но это усредненное значение, на самом деле уровень падающего на землю излучения различен и зависит от географического положения местности.

    Где солнечное ионизирующее облучение сильнее?

    Наибольшая мощность космических лучей фиксируется на полюсах, а меньше всего – на экваторе. Связано это с тем, что магнитное поле Земли отклоняет к полюсам заряженные частицы, падающие из космоса. Кроме этого, излучение усиливается с высотой – на высоте 10 километров над уровнем моря его показатель возрастает в 20-25 раз. Активному воздействию более высоких доз солнечной радиации подвергаются жители высокогорий, поскольку атмосфера в горах тоньше и легче простреливается идущими от солнца потоками гамма-квантов и элементарных частиц.

    Важно. Серьезного воздействия радиационный уровень до 0,3 мЗв/ч не оказывает, но при дозе 1,2 мкЗ/ч рекомендуется покинуть район, а случае крайней необходимости находится на его территории не более полугода. При превышении показаний вдвое следует ограничить пребывание в этой местности до трех месяцев.

    Если над уровнем моря годовая доза космического облучения составляет 0,3 мЗв/год, то при повышении высоты через каждые сто метров этот показатель увеличивается на 0,03 мЗв/год. После проведения небольших расчетов можно сделать вывод, что недельный отпуск в горах на высоте 2000 метров даст облучение 1мЗв/год и обеспечит почти половину общей годовой нормы (2,4 мЗв/год).

    Получается, что жители гор получают годовую дозу радиации, в разы превышающую норму, и должны чаще болеть лейкозом и раком, чем люди, живущие на равнинах. На самом деле, это не так. Наоборот, в горных районах фиксируется более низкая смертность от этих заболеваний, а часть населения – долгожители. Это подтверждает тот факт, что длительное нахождение в местах высокой радиационной активности не оказывает негативного влияния на организм человека.

    Солнечные вспышки – высокая радиационная опасность

    Вспышки на Солнце – большая опасность для человека и всего живого на Земле, поскольку плотность потока солнечного излучения может превышать обычный уровень космического излучения в тысячу раз. Так, выдающийся советский ученый А. Л. Чижевский связал периоды образования солнечных пятен с эпидемиями тифа (1883-1917 г) и холеры (1823-1923 г) в России. На основании сделанных графиков он еще в 1930 году предсказал возникновение обширной пандемии холеры в 1960-1962 годах, которая и началась в Индонезии в 1961 году, затем быстро распространилась на другие страны Азии, Африки и Европы.

    Сегодня получено множество данных, свидетельствующих о связи одиннадцатилетних циклов солнечной активности со вспышками заболеваний, а также с массовыми миграциями и сезонами бурного размножения насекомых, млекопитающих и вирусов. Гематологи установили увеличение количество инфарктов и инсультов в периоды максимальной солнечной активности. Такая статистика связана с тем, что в это время у людей повышается свертываемость крови, а так как у больных с заболеваниями сердца компенсаторная деятельность угнетена, возникают сбои в его работе вплоть до некрозов сердечной ткани и кровоизлияний в мозг.

    Читайте также:
    Как обновить старый сруб дома своими руками: пошаговая инструкция и рекомендации

    Большие солнечные вспышки происходят не так часто – раз в 4 года. В это время увеличивается количество и размер пятен, в солнечной короне образуются мощные коронарные лучи, состоящие из протонов и небольшого количества альфа-частиц. Самый мощный их поток астрологи зарегистрировали в 1956 году, когда плотность космического излучения на поверхности земли увеличилась в 4 раза. Еще одним последствием подобной солнечной активности стало полярное сияние, зафиксированное в Москве и Подмосковье в 2000 году.

    Как себя обезопасить?

    Конечно, повышенный радиационный фон в горах – не повод отказываться от поездок в горы. Правда, стоит подумать о мерах безопасности и отправиться в путешествие вместе с портативным радиометром, который поможет контролировать уровень радиации и при необходимости ограничить время пребывания в опасных районах. В местности, где показании счетчика показывают величину ионизирующего облучения в 7 мкЗв/ч, не стоит находиться больше одного месяца.

    ИНФРАКРАСНАЯ РАДИАЦИЯ

    Видимые лучи — 400-760 нм;

    Солнечная радиация и причины ее изменений. Биологическое действие солнечной радиации на окружающую среду и здоровье человека. Применение ультрафиолетового излучения в профилактических целях

    Солнце — самая близкая к нам звезда — центральное тело нашей системы.

    Условия жизни на Земле определяются исключительно энергией, получаемой от Солнца.

    Диаметр Солнца составляет 1млн.390 тыс. км, т.е. в 109 раз больше Земли.

    Площадь поверхности Солнца в 12000 раз больше площади Земли. Среднее расстояние Земли от Солнца немного меньше 150 млн. км. Давление в центре Солнца достигает 10 млрд. атмосфер, а температура — 26 млн. градусов С.

    Солнце излучает в мировое пространство огромное количество энергии (4х1026 вт) в виде волнового и корпускулярного излучения. Примерно 400- миллионная доля этой энергии поступает на внешнюю границу атмосферы Земли, создавая облученность на перпендикулярной поверхности около 2 кал/см2 в минуту или 1396 вт/м2.

    Все оптическое излучение Солнца состоит из ультрафиолетовой (УФ), видимой и инфракрасной (ИК) области спектра.

    Интенсивность солнечного излучения зависит от:

    1. Высоты стояния Солнца над горизонтом.Высота стояния Солнца над горизонтом зависит от географического расположения населенного пункта, времени года и суток. Так, при высоте 30° путь лучей в 2 раза длиннее, чем при 90°, а при закате — в 30 раз. Кроме того, солнечный поток падает на большую площадь.

    2. Прозрачности атмосферы.Лучи с разной длиной волны по-разному проходят через атмосферу при наличии облаков. Ультрафиолетовые лучи рассеиваются, а инфракрасные — поглощаются. Озоновый слой в атмосфере резко сокращает количество коротких ультрафиолетовых лучей.

    В городах интенсивность солнечной энергии в среднем ниже на 10-30% (в зимние месяцы на 60%), чем в прилегающих сельских районах, особенно коротковолновой части солнечного спектра (на 40-50%).

    Солнечный поток достигает Земли в виде прямой и рассеянной радиации. Чем ниже высота стояния Солнца, тем относительно больше доля рассеянной радиации.

    Все виды солнечного излучения, достигающие поверхности Земли (инфракрасное, видимое и ультрафиолетовое) имеют одинаковую физическую природу (электромагнитные волны), но отличаются длиной волны. Именно это отличие обуславливает особенности биологического действия каждой составляющей солнечного потока.

    (слайд №13) Между энергией квантов любого ЭМ-излучения и частотой колебаний или длины волны существует определенная зависимость, выраженная формулой Планка: е = hf, где е – энергия кванта, f – частота колебаний, h – квантовая постоянная. Из формулы следует, что чем больше частота колебаний (или чем меньше длина волны), тем больший запас энергии несет квант излучения и тем больше будет выражена степень воздействия такого излучения на организм. Разные энергии ЭМ-излучений определяют и различие в их биологическом действии на организм.

    (слайд №14) ГРАНИЦЫ СОЛНЕЧНОГО СПЕКТРА

    Спектр Солнца, достигающий границ земной атмосферы, —от 0,1 до 60 мк.

    1) Инфракрасные лучи (ИК) — от 0,76 до 60 мк (в этой области принято измерение в микронах);

    3) Ультрафиолетовые лучи (УФ) — 10- 400 нм.

    Характеристика потока различна по составу:

    на границе атмосферы 5% 52% 43%

    у поверхности Земли 1% 40% 59%

    Биологическое действие солнечной радиации на организм слагается из совокупного воздействия всех областей оптического излучения: инфракрасной, видимой и ультрафиолетовой. Остановимся на разборе всех видов излучений.

    Инфракрасные лучи были открыты Гершелем в 1800 г. Основное действие — тепловое. Доля инфракрасной радиации в общем потоке Солнца увеличивается при уменьшении высоты его над горизонтом.

    Так, на экваторе при 90°— 48,8% от общего потока, а при 50° — до 67,9%. При подъеме на высоту интенсивность интегрального потока резко возрастает. ИК- радиация состоит из короткой (до 1,5 мк) и длинной (>1,5 мк) частей.

    Читайте также:
    Как сделать стеллаж для гаража и хозблока на даче - советы и чертежи

    Длинные ИК-лучи задерживаются главным образом в эпидермисе кожи и вызывают нагревание ее поверхности, раздражают рецепторы (жжение).

    Инфракрасная эритема образуется за счет расширения капилляров кожи, разлитая, без четких границ.

    Короткие ИК-лучи проникают на глубину 2,5-4 см, вызывают глубокое прогревание, причем субъективные ощущения значительно меньше.

    В настоящее время большинство исследователей признает не только тепловое, но и фотохимическое действие ИК-лучей на организм. Отмечается поглощение ИК-лучей белками крови и активация ферментных процессов.

    Общее действие ИК-лучей — нагревание с образованием выраженной разлитой эритемы, с выделением ряда физиологически активных веществ (например, ацетилхолина), которые поступают в общий круг кровообращения и вызывают усиление обменных процессов в отдаленных от мест облучения тканях и органах. Общая реакция организма выражается в перераспределении крови в сосудах, повышении числа эозинофилов в периферической крови, повышении общей сопротивляемости организма. Подобные свойства ИК-излучения широко применяются в физиотерапии с помощью использования ИСКУССТВЕННЫх ИСТОЧНИКов ИК-ИЗЛУЧЕНИЯ:

    Лекция 2. Солнечная радиация

    СОЛНЕЧНАЯ РАДИАЦИЯ.

    1.Значение солнечной радиации для жизни на Земле.

    2. Виды солнечной радиации.

    3. Спектральный состав солнечной радиации.

    4. Поглощение и рассеивание радиации.

    5.ФАР (фотосинтетически активная радиация).

    6. Радиационный баланс.

    1. Основным источником энергии на Земле для всего живого ( растений, животных и человека) является энергия солнца.

    Солнце представляет собой газовый шар радиусом 695300км. Радиус Солнца в 109 раз больше радиуса Земли (экваториальный 6378,2км, полярный 6356,8км). Солнце состоит в основном из водорода (64%) и гелия (32%). На долю остальных приходится всего 4% его массы.

    . Солнечная энергия является основным условием существова­ния биосферы и одним из главных климатообразующих факто­ров. За счет энергии Солнца воздушные массы в атмосфере не­прерывно перемещаются, что обеспечивает постоянство газово­го состава атмосферы. Под действием солнечной радиации ис­паряется огромное количество воды с поверхности водоемов, почвы, растений. Водяной пар, переносимый ветром с океанов и морей на материки, является основным источником осадков для суши.

    Солнечная энергия — непременное условие существования зеленых растений, превращающих в процессе фотосинтеза сол­нечную энергию в высокоэнергетические органические веще­ства.

    Рост и развитие растений представляют собой процесс усвоения и переработки солнечной энергии, поэтому сельскохозяйственное производство возможно только при условии поступления солнечной энергии на поверхность Земли. Русский ученый писал: « Дайте самому лучшему повару сколько угодно свежего воздуха, солнечного света, целую речку чистой воды, попросите, чтобы из всего этого он приготовил вам сахар, крахмал, жиры и зерно, и он решит, что вы над ним смеетесь. Но то, что кажется совершенно фантастическим человеку, беспрепятственно совершается в зеленых листьях растений под действием энергии Солнца». Подсчитано, что 1 кв. метр листьев за час продуцирует грамм сахара. В связи с тем, что Земля окружена сплошной оболочкой атмосферы, солнечные лучи, прежде чем достичь поверхности земли, проходят всю толщу атмосферы, которая частично отражает их, частично рассеивает, т. е. изменяет количество и качество солнечного света, поступающего на поверхность земли. Живые организмы чутко реагируют на изменение интенсивности освещенности, создаваемой сол­нечным излучением. Вследствие различной реакции на интен­сивность освещенности все формы растительности делят на све­толюбивые и теневыносливые. Недостаточная освещенность в посевах обусловливает, например, слабую дифференциацию тканей соломины зерновых культур. В результате уменьшаются крепость и эластичность тканей, что часто приводит к полега­нию посевов. В загущенных посевах кукурузы из-за слабой осве­щенности солнечной радиацией ослабляется образование почат­ков на растениях.

    Солнечная радиация влияет на химический состав сельскохо­зяйственной продукции. Например, сахаристость свеклы и пло­дов, содержание белка в зерне пшеницы непосредственно зави­сят от числа солнечных дней. Количество масла в семенах под­солнечника, льна также возрастает с увеличением прихода сол­нечной радиации.

    Освещенность надземной части растений существенно влия­ет на поглощение корнями питательных веществ. При слабой освещенности замедляется перевод ассимилятов в корни, и в результате тормозятся биосинтетические процессы, происходящие в клетках растений.

    Освещенность влияет и на появление, распространение и развитие болезней растений. Период заражения состоит из двух фаз, различающихся между собой по реакции на световой фак­тор. Первая из них – собственно прорастание спор и проникно­вение заразного начала в ткани поражаемой культуры — в боль­шинстве случаев не зависит от наличия и интенсивности света. Вторая – после прорастания спор — наиболее активно проходит при повышенной освещенности.

    Положительное действие света сказывается также на скорос­ти развития патогена в растении-хозяине. Особенно четко это проявляется у ржавчинных грибов. Чем больше света, тем коро­че инкубационный период у линейной ржавчины пшеницы, желтой ржавчины ячменя, ржавчины льна и фасоли и т. д. А это увеличивает число генераций гриба и повышает интенсивность поражения. В условиях интенсивного освещения у этого патоге­на возрастает плодовитость

    Читайте также:
    Доставка грузов из Китая: транспортировка товаров по морю, автотранспортом, авиа и железной дорогой

    Некоторые заболевания наиболее активно развиваются при недостаточном освещении, вызывающем ослабление растений и снижение их устойчивости к болезням (возбудителям разного рода гнилей, особенно овощных культур).

    Продолжительность осве­щения и растения. Ритм сол­нечной радиации (чередова­ние светлой и темной части суток) является наиболее устойчивым и повторяющимся из года в год фактором внешней среды. В результате многолетних исследований физиологами ус­тановлена зависимость перехода растений к генеративному раз­витию от определенного соотношения длины дня и ночи. В свя­зи с этим культуры по фотопериодической реакции можно клас­сифицировать по группам: короткого дня, развитие которых задерживается при продол­жительности дня больше 10ч. Короткий день способствует закладке цветков, а длинный день препятствует этому. К таким культурам относятся соя, рис, просо, сорго, кукуруза и др.;

    длинного дня до 12-13час., требующие для своего развития продолжитель­ного освещения. Их развитие ускоряется, когда продолжитель­ность дня составляет около 20 ч. К этим культурам относятся рожь, овес, пшеница, лен, горох, шпинат, клевер и др.;

    нейтральные по отношению к длине дня, развитие которых не зависит от продолжительности дня, например томат, гречиха, бобовые, ревень.

    Установлено, что для начала цветения растений необходимо преобладание в лучистом потоке определенного спектрального состава. Растения короткого дня быстрее развиваются, когда максимум излучения приходится на сине-фиолетовые лучи, а растения длинного дня – на красные. Продолжительность светлой части суток (астрономическая длина дня) зависит от времени года и географической широты. На экваторе продолжительность дня в течение всего года равна 12 ч ± 30 мин. При продвижении от экватора к полюсам после весеннего равноденствия (21.03) длина дня увеличивается к се­веру и уменьшается к югу. После осеннего равноденствия (23.09) распределение продолжительности дня обратное. В Северном полушарии на 22.06 приходится самый длинный день, продолжительность которого севернее Полярного круга 24 ч. Самый короткий день в Северном полушарии 22.12, а за Полярным кру­гом в зимние месяцы Солнце вообще не поднимается над гори­зонтом. В средних же широтах, например в Москве, продолжи­тельность дня в течение года меняется от 7 до 17,5 ч.

    2. Виды солнечной радиации.

    Солнечная радиация состоит из трех составляющих: прямой солнечной радиации, рассеянной и суммарной.

    ПРЯМАЯ СОЛНЕЧНАЯ РАДИАЦИЯ S –радиация, поступающая от Солнца в атмосферу и затем на земную поверхность в виде пучка параллельных лучей. Ее интенсивность измеряется в калориях на см2 в минуту. Она зависит от высоты солнца и состояния атмосферы (облачность, пыль, водяной пар). Годовая сумма прямой солнечной радиации на горизонтальную поверхность территории Ставропольского края составляет 65-76 ккал/ см2/мин. На уровне моря при высоком положении Солнца (лето, полдень) и хорошей прозрачности прямая солнечная радиация составляет 1,5 ккал/ см2/мин. Это коротковолновая часть спектра. При прохождении потока прямой солнечной радиации через атмосферу происходит его ослабление, вызванное поглощением (около 15 %) и рассеянием (около 25 %) энергии газами, аэрозо­лями, облаками.

    Поток прямой солнечной радиации, падающий на горизонтальную поверхность называют инсоляцией S=S sin ho – вертикальная составляющая прямой солнечной радиации.

    S количество тепла, получаемого перпендикулярной к лучу поверхностью,

    ho высота Солнца, т. е. угол, образованный солнечным лучом с горизонтальной поверхностью.

    На границе атмосферы интенсивность солнечной радиации составляет So= 1,98 ккал/ см2/мин. – по международному соглашению 1958г. И называется солнечной постоянной. Такой бы она была у поверхности, если бы атмосфера была абсолютно прозрачной.

    Рис. 2.1. Путь солнечного луча в атмосфере при разной высоте Солнца

    РАССЕЯНАЯ РАДИАЦИЯ D часть солнечной радиации в результате рассеяния атмосферой уходит обратно в космос, но значительная ее часть поступает на Землю в виде рассеянной радиации. Максимум рассеянной радиации + 1 ккал/ см2/мин. Отмечается при чистом небе, если на нем высокие облака. При пасмурном небе спектр рассеянной радиации сходен с солнечным. Это коротковолновая часть спектра. Длина волны 0,17—4мк.

    СУММАРНАЯ РАДИАЦИЯ Q состоит из рассеянной и прямой радиации на горизонтальную поверхность. Q= S+ D.

    Соотношение между прямой и рассеянной радиацией в со­ставе суммарной радиации зависит от высоты Солнца, облачно­сти и загрязненности атмосферы, высоты поверхности над уров­нем моря. С увеличением высоты Солнца доля рассеянной ра­диации при безоблачном небе уменьшается. Чем прозрачнее ат­мосфера и чем выше Солнце, тем меньше доля рассеянной радиации. При сплошной плотной облачности суммарная ради­ация полностью состоит из рассеянной радиации. Зимой вслед­ствие отражения радиации от снежного покрова и ее вторичного рассеяния в атмосфере доля рассеянной радиации в составе сум­марной заметно увеличивается.

    Читайте также:
    Как закрепить дюбель в рыхлой стене? 5 способов на любой вкус - Легкий ремонт квартир

    Свет и тепло, получаемые растениями от Солнца, — результат действия суммарной солнечной радиации. Поэтому большое значение для сельского хозяйства имеют данные о суммах ради­ации, получаемых поверхностью за сутки, месяц, вегетационный период, год.

    Отраженная солнечная радиация. Альбедо. Суммарная радиа­ция, дошедшая до земной поверхности, частично отражаясь от нее, создает отраженную солнечную радиацию (RK), направленную от земной поверхности в атмосферу. Значение отраженной ра­диации в значительной степени зависит от свойств и состояния отражающей поверхности: цвета, шероховатости, влажности и др. Отражательную способность любой поверхности можно ха­рактеризовать величиной ее альбедо (Ак), под которым понимают отношение отраженной солнечной радиации к суммарной. Аль­бедо обычно выражают в процентах:

    Наблюдения показывают, что альбедо различных поверхнос­тей изменяется в сравнительно узких пределах (10. 30 %), ис­ключение составляют снег и вода.

    Альбедо зависит от влажности почвы, с возрастанием которой оно уменьшается, что имеет важное значение в процессе измене­ния теплового режима орошаемых полей. Вследствие уменьше­ния альбедо при увлажнении почвы увеличивается поглощаемая радиация. Альбедо различных поверхностей имеет хорошо выра­женный дневной и годовой ход, обусловленный зависимостью альбедо от высоты Солнца. Наименьшее значение альбедо на­блюдают в околополуденные часы, а в течение года — летом.

    Собственное излучение Земли и встречное излучение атмосфе­ры. Эффективное излучение. Земная поверхность как физическое тело, имеющее температуру выше абсолютного нуля (-273 °С), является источником излучения, которое называют собственным излучением Земли (Е3). Оно направлено в атмосферу и почти пол­ностью поглощается водяным паром, капельками воды и угле­кислым газом, содержащимися в воздухе. Излучение Земли за­висит от температуры ее поверхности.

    Атмосфера, поглощая небольшое количество солнечной ра­диации и практически всю энергию, излучаемую земной поверх­ностью, нагревается и, в свою очередь, также излучает энергию. Около 30 % атмосферной радиации уходит в космическое про­странство, а около 70 % приходит к поверхности Земли и назы­вается встречным излучением атмосферы (Еа).

    Количество энергии, излучаемое атмосферой, прямо пропор­ционально ее температуре, содержанию углекислого газа, озона и облачности.

    Поверхность Земли поглощает это встречное излучение по­чти целиком (на 90. 99 %). Таким образом, оно является для земной поверхности важным источником тепла в дополнение к поглощаемой солнечной радиации. Это влияние атмосферы на тепловой режим Земли называют парниковым или оранжерейным эффектом вследствие внешней аналогии с действием стекол в парниках и оранжереях. Стекло хорошо пропускает солнечные лучи, нагревающие почву и растения, но задерживает тепловое излучение нагревшейся почвы и растений.

    Разность между собственным излучением поверхности Земли и встречным излучением атмосферы называют эффективным из­лучением: Еэф.

    В ясные и малооблачные ночи эффективное излучение гораз­до больше, чем в пасмурные, поэтому больше и ночное охлажде­ние земной поверхности. Днем оно перекрывается поглощенной суммарной радиацией, вследствие чего температура поверхности повышается. При этом растет и эффективное излучение. Земная поверхность в средних широтах теряет за счет эффективного из­лучения 70. 140 Вт/м2, что составляет примерно половину того количества тепла, которое она получает от поглощения солнеч­ной радиации.

    3. Спектральный состав радиации.

    Солнце, как источник излучения, обладает многообразием испускаемых волн. Потоки лучистой энергии по длине волн условно делят на ко­ротковолновую (X 4 мкм) радиа­цию. Спектр солнечной радиации на границе земной атмосферы практически заключается между длинами волн 0,17 и 4 мкм, а земного и атмосферного излучения — от 4 до 120 мкм. Следова­тельно, потоки солнечного излучения (S, D, RK) относятся к ко­ротковолновой радиации, а излучение Земли (£3) и атмосферы (Еа) — к длинноволновой.

    Спектр солнечной радиации можно разделить на три каче­ственно различные части: ультрафиолетовую (Y 0,69 мкм) лучи.

    У земной поверхности максимум энергии в спектре прямой солнечной радиации, когда Солнце находится высоко, прихо­дится на область желто-зеленых лучей (диск Солнца желтый). Когда же Солнце располагается у горизонта, максимальную энергию имеют дальние красные лучи (солнечный диск крас­ный). Поэтому энергия прямого солнечного света мало участву­ет в процессе фотосинтеза.

    Так как ФАР является одним из важнейших факторов про­дуктивности сельскохозяйственных растений, информация о ко­личестве поступающей ФАР, учет ее распределения по террито­рии и во времени имеют большое практическое значение.

    Интенсивность ФАР можно измерить, но для этого необходимы специальные светофильтры, пропускающие только волны в диапазоне 0,38. 0,71 мкм. Такие приборы есть, но на сети актинометрических станций их не применяют, а измеряют интен­сивность интегрального спектра солнечной радиации. Значение ФАР можно рассчитать по данным о приходе прямой, рассеян­ной или суммарной радиации с помощью коэффициентов, пред­ложенных , X. Г. Тоомингом и :

    Читайте также:
    Давление для пескоструя: какое нужно и как работает аппарат?

    Qфар = 0,43 S‘ +0,57 D);

    составлены карты распределения месячных и годовых сумм Фар на территории России.

    Для характеристики степени использования посевами ФАР применяют коэффициент полезного использования ФАР:

    КПИфар= (сумма Q/фар/сумма Q/фар) 100%,

    где сумма Q/фар – сумма ФАР, затрачиваемая на фотосинтез за период вегетации расте­ний; сумма Q/фар – сумма ФАР, поступающая на посевы за этот период;

    Посевы по их средним значениям КПИФАр разделяют на группы (по ): обычно наблюдаемые — 0,5. 1,5 %; хорошие—1,5. 3,0; рекордные — 3,5. 5,0; теорети­чески возможные — 6,0. 8,0 %.

    6. РАДИАЦИОННЫЙ БАЛАНС ЗЕМНОЙ ПОВЕРХНОСТИ

    Разность между приходящими и уходящими потоками лучис­той энергии называют радиационным балансом земной поверхнос­ти (В).

    Приходная часть радиационного баланса земной поверхности днем состоит из прямой солнечной и рассеянной радиации, а также излучения атмосферы. Расходной частью баланса являют­ся излучение земной поверхности и отраженная солнечная ра­диация:

    B=S / +D+ Ea– Е3-Rk

    Уравнение можно записать и в другом виде: B = QRK – Еэф.

    Для ночного времени уравнение радиационного баланса име­ет следующий вид:

    В = Еа — Е3, или В = —Еэф.

    Если приход радиации больше, чем расход, то радиационный баланс положительный и деятельная поверхность* нагревается. При отрицательном балансе она охлаждается. Летом радиацион­ный баланс днем положительный, а ночью — отрицательный. Переход через ноль происходит утром примерно через 1 ч после восхода Солнца, а вечером за 1. 2 ч до захода Солнца.

    Годовой радиационный баланс в районах, где устанавливает­ся устойчивый снежный покров, в холодное время года имеет отрицательные значения, в теплое — положительные.

    Радиационный баланс земной поверхности существенно вли­яет на распределение температуры в почве и приземном слое ат­мосферы, а также на процессы испарения и снеготаяния, обра­зование туманов и заморозков, изменение свойств воздушных масс (их трансформацию).

    Знание радиационного режима сельскохозяйственных угодий позволяет рассчитывать количество радиации, поглощенной по­севами и почвой в зависимости от высоты Солнца, структуры посева, фазы развития растений. Данные о режиме необходимы и для оценки разных приемов регулирования температуры и влажности почвы, испарения, от которых зависят рост и разви­тие растений, формирование урожая, его количество и качество.

    Эффективными агрономическими приемами воздействия на радиационный, а следовательно, и на тепловой режим деятель­ной поверхности является мульчирование (покрытие почвы тон­ким слоем торфяной крошки, перепревшим навозом, древесны­ми опилками и др.), укрытие почвы полиэтиленовой пленкой, орошение. Все это изменяет отражательную и поглощательную способность деятельной поверхности.

    * Деятельная поверхность – поверхность почвы, воды или растительности, которая непосредственно поглощает солнечную и атмосферную радиацию и отда­ет излучение в атмосферу, чем регулирует термический режим прилегающих слоев воздуха и нижележащих слоев почвы, воды, растительности.

    Физические свойства водного раствора этиленгликоля

    Приведены данные по физическим свойствам водного раствора этиленгликоля, которые могут быть использованы при выполнении инженерных расчётов.

    Плотность водного раствора этиленгликоля

    Плотность смеси этиленгликоля и воды приведена в таблице для концентрации этиленгликоля от 10 процентов до 70 процентов по массе в диапазоне температур от 10 до 93 градусов Цельсия.

    Плотность водного раствора этиленгликоля (содержание в процентах по массе)
    Температура 10% 20% 30% 40% 50% 60% 70%
    о С ρ, кг/м 3 ρ, кг/м 3 ρ, кг/м 3 ρ, кг/м 3 ρ, кг/м 3 ρ, кг/м 3 ρ, кг/м 3
    10 997,9 998,1 998,3 998,5 998,6 998,8 998,9
    37 992,1 992,2 992,3 992,5 992,6 992,8 992,9
    65 979,4 979,5 979,6 979,8 979,9 980,0 980,1
    93 962,6 962,8 962,9 963,2 963,1 963,2 963,4

    Теплопроводность смеси этиленгликоля с водой

    Значения теплопроводности водного раствора этиленгликоля показаны в таблице для диапазона температур от 10 до 70 градусов Цельсия и концентрации от 10% до 70%. С увеличением концентрации этиленгликоля с 10% до 50% по массе теплопроводность раствора снижается примерно на 30%.

    Теплопроводность смеси этиленгликоля (содержание в процентах по массе) с водой
    Температура 10% 20% 30% 40% 50% 60% 70%
    о С Вт/(м• o C) Вт/(м• o C) Вт/(м• o C) Вт/(м• o C) Вт/(м• o C) Вт/(м• o C) Вт/(м• o C)
    10 0,542 0,508 0,475 0,445 0,416 0,389 0,363
    38 0,576 0,533 0,492 0,453 0,417 0,384 0,353
    65 0,602 0,550 0,502 0,457 0,414 0,376 0,341
    93 0,617 0,560 0,506 0,456 0,408 0,367 0,328

    Теплоемкость водного раствора этиленгликоля

    Оценочные значения теплоемкости водного раствора этиленгликоля приводятся в таблице для температур от 10 до 93 градусов Цельсия и концентраций этиленгликоля от 10 до 70 процентов. Теплоемкость 50-ти процентного раствора этиленгликоля примерно на 18 процентов меньше теплоёмкости воды.

    Теплоемкость смеси этиленгликоля (содержание в процентах по массе) с водой
    Температура 10% 20% 30% 40% 50% 60% 70%
    о С Дж/(кг• o C) Дж/(кг• o C) Дж/(кг• o C) Дж/(кг• o C) Дж/(кг• o C) Дж/(кг• o C) Дж/(кг• o C)
    10 4079 3935 3785 3621 3442 3249 3041
    38 4103 3981 3845 3694 3527 3346 3149
    65 4131 4028 3905 3767 3613 3443 3257
    93 4162 4074 3965 3839 3698 3540 3365

    Концентрация этиленгликоля по массе и по объёму в водном растворе

    В таблице приведены соотношения концентрации этиленгликоля в водном растворе по массе и по объёму.

    Содержание этиленгликоля по массе (в процентах)
    5% 10% 20% 30% 40% 50% 60% 70%
    Концентрация этиленгликоля по объёму (в процентах) 4,51% 9,06% 18,31% 27,76% 37,41% 47,27% 57,31% 67,66%

    Температура кипения водного раствора этиленгликоля

    Приведена диаграмма по температурам кипения водного раствора этиленгликоля в зависимости от его содержания по массе в процентах при давлении атмосферного воздуха 760 мм.рт.ст. С увеличением концентрации этиленгликоля с 10% до 50% по массе температура кипения раствора повышается всего лишь с 101,1 до 107,2 градуса Цельсия.

    Сравнительная температура кипения смеси этиленгликоля с водой (при нормальном атмосферном давлении)

    Вода (без содержания этиленгликоля) 100 o C

    Вода (90%) + Этиленгликоль (10%) 101.1 o C

    Вода (70%) + Этиленгликоль (30%) 104,4 o C

    Вода (50%) + Этиленгликоль (50%) 107,2 o C

    Этиленгликоль (60%) + Вода (20%) 110,0 o C

    Этиленгликоль (90%) + Вода (10%) 140,6 o C

    Этиленгликоль (95%) + Вода (5%) 158,3 o C

    Температура замерзания водного раствора этиленгликоля

    Приведена диаграмма по температурам замерзания водного раствора этиленгликоля в зависимости от его содержания по массе в процентах. Примечательно, что при концентрации этиленгликоля от 10% до 20% температура замерзания водного раствора понижается незначительно от -3,2 до -7,8 градуса Цельсия. С последующим доведением концентрации этиленгликоля до 50% температура замерзания раствора достаточно резко снижается до -33,8 градусов Цельсия. Это свойство этиленгликоля позволяет использовать его в технологических процессах в качестве теплоносителя с низкими значениями рабочих температур.

    Сравнительная температура замерзания раствора этиленгликоля с водой

    Вода (без добавки этиленгликоля) -1,0 o C

    Вода (90%) + Этиленгликоль (10%) -3,2 o C

    Вода (90%) + Этиленгликоль (20%) -7,8 o C

    Вода (70%) + Этиленгликоль (30%) -14,1 o C

    Вода (50%) + Этиленгликоль (50%) -33,8 o C

    Этиленгликоль (60%) + Вода (40%) -48,5 o C

    НИОКР в машиностроении

    Инновационное импортозамещение

    г. Коломна, Московская область
    Россия, 140400

    Этиленгликоль (моноэтиленгликоль), диэтиленгликоль, пропиленгликоль и их расстворы

    Диэтиленгликоль

    Физические свойства диэтиленгликоля и этиленгликоля близки. Диэтиленгликоль отличается от этиленгликоля лучшей растворимостью, меньшей летучестью, более высокой температурой кипения и вязкостью. Температура замерзания водного раствора несколько выше чем у этиленгликоля, хотя и незначительно.

    Диэтиленгликоль превосходно смешивается с водой и большим количеством различных органических соединений: одноатомными спиртами, пропиленгликолем и другими гликолями, этилцеллозольвом и другими целлозольвами и карбитолами, этаноламином, ацетоном, фенолом, уксусной кислотой, фурфуролом, пиридином в широком интервале температур. В диэтиленгликоле не растворимы минеральные и многие растительные масла.

    Диэтиленгликоль реже используется в качестве антифриза по сравнению с этиленгликолем. Однако скорее это связано не с тем, что он имеет менее подходящие для этой цели свойства (температура замерзания водных растворов и другие характеристики различаются не столь значительно) а с тем, что этиленгликоль является более привычным и доступным продуктом и объем его производства больше. При этом в некоторых случаях применение диэтиленгликоля в смеси этиленгликолем позволяет получать антифризы с более высокими эксплуатационными свойствами.

    Диэтиленгликоль используется в качестве избирательного (селективного) растворителя с целью экстракции различных веществ из нефти и нефтепродуктов, таких как ксилол, толуол, бензол, т. к. хорошо растворяет ароматические углеводороды и не способен к растворению парафиновых и нафтеновых углеводородов. Благодаря более высокой растворимости диэтиленгликоль предпочтительней этиленгликоля для этих целей. При этом получаются продукты высокой степени чистоты.

    Благодаря высокой гигроскопичности диэтиленгликоль широко используется для удаления водяных паров из газов, прокачиваемых по трубопроводам. Удалять водяные пары необходимо с целью предотвращения образования в трубопроводах конденсата и ледяных пробок. Также с помощью диэтиленгликоля можно очищать газы и от других примесей, например сероводорода и углекислого газа.

    Дигликоль применяется в качестве сырья при синтезе различных полимерных материалов: ненасыщенных полиэфирных смол, щелочестойких алкидных смол, термостойких и огнестойких полиуретанов, а также используется при синтезе различных модифицирующих компонентов для полимерных материалов: пластификаторов, стабилизаторов, антиоксидантов, активаторов полимеризации, отвердителей эпоксидных смол.

    Токсичность диэтиленгликоля ниже чем этиленгликоля. Пары не представляют высокой опасности при вдыхании. Однако прием внутрь также чрезвычайно опасен.

    Этиленгликоль нашел широкое применение в технике:
    Как компонент автомобильных антифризов и тормозных жидкостей, что составляет 60% его потребления. Смесь 60% этиленгликоля и 40% воды замерзает при -45 °С. Коррозионно активен, поэтому применяется с ингибиторами коррозии;
    В качестве теплоносителя в виде раствора в автомобилях, в системах жидкостного охлаждения компьютеров;
    В производстве целлофана, полиуретанов и ряда других полимеров. Это второе основное применение;
    Как растворитель красящих веществ;
    В органическом синтезе:
    – в качестве высокотемпературного растворителя.
    В составах для противообледенительной обработки лобовых стекол и самолетов.
    Как компонент жидкости «И», используемой для предотвращения обводнения авиационных топлив.
    В качестве криопротектора
    Для поглощения воды, для предотвращения образования гидрата метана, который забивает трубопроводы при добыче газа в открытом море. На наземных станциях его регенириуют путем осушения и удаления солей.
    Этиленгликоль применяется также
    -при производстве конденсаторов
    -при производстве 1,4-диоксана
    -компонент в составе систем жидкостного охлаждения компьютеров
    -в качестве компонента крема для обуви (1-2%)
    -в составе для мытья стекол вместе с изопропиловым спиртом.

    Водные растворы пропиленгликоля и этиленгликоля

    Раствор Температура замерзания Плотностьпри 20˚С Раствор Температура замерзания Плотностьпри 20˚С
    Пропиленгликоль 30% -13˚С 1,023 Этиленгликоль 30% -15˚С 1,038
    Пропиленгликоль 35% -20˚С 1,028 Этиленгликоль 35% -20˚С 1,045
    Пропиленгликоль 40% -25˚С 1,032 Этиленгликоль 40% -25˚С 1,052
    Пропиленгликоль 45% -30˚С 1,035 Этиленгликоль 45% -30˚С 1,058
    Пропиленгликоль 50% -35˚С 1,038 Этиленгликоль 50% -35˚С 1,064
    Пропиленгликоль 55% -45˚С 1,040 Этиленгликоль 55% -43˚С 1,071
    Пропиленгликоль 60% -55˚С 1,042 Этиленгликоль 60% -50˚С 1,077
    Пропиленгликоль 65% -60˚С 1,043 Этиленгликоль 65% -60˚С 1,083
    Пропиленгликоль 70% -65˚С 1,044 Этиленгликоль 70% -70˚С 1,088

    Из-за склонности растворов гликолей к переохлаждению фактическая температура замерзания может отличаться в пределах 2˚С.

    Плотность водных растворов этиленгликоля при различных температурах

    Температура,˚С Концентрация этиленгликоля ГОСТ 19774 высшего сорта в водном растворе (по массе)
    10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
    -45 1,11 1,125 1,137
    -40 1,108 1,122 1,134
    -35 1,087 1,105 1,12 1,131
    -30 1,086 1,103 1,118 1,129
    -25 1,068 1,085 1,101 1,115 1,126
    -20 1,067 1,083 1,098 1,112 1,123 1,133
    -15 1,066 1,081 1,096 1,109 1,12 1,13 1,137
    -10 1,017 1,32 1,048 1,064 1,079 1,094 1,107 1,117 1,127 1,134
    -5 1,016 1,31 1,047 1,062 1,077 1,091 1,104 1,114 1,123 1,131
    1,015 1,03 1,046 1,061 1,075 1,088 1,101 1,111 1,12 1,127
    5 1,014 1,029 1,044 1,059 1,073 1,085 1,097 1,108 1,116 1,124
    10 1,013 1,027 1,042 1,056 1,07 1,083 1,094 1,105 1,113 1,120
    15 1,012 1,026 1,041 1,054 1,067 1,08 1,091 1,102 1,10 1,117
    20 1,011 1,024 1,038 1,052 1,064 1,077 1,088 1,098 1,106 1,113
    25 1,009 1,022 1,036 1,05 1,061 1,074 1,084 1,094 1,102 1,11
    30 1,007 1,021 1,034 1,047 1,058 1,071 1,081 1,091 1,099 1,106
    35 1,006 1,019 1,032 1,045 1,055 1,067 1,078 1,087 1,096 1,103
    40 1,004 1,017 1,029 1,041 1,052 1,064 1,074 1,084 1,093 1,099
    45 1,002 1,014 1,026 1,038 1,049 1,06 1,071 1,081 1,089 1,096
    50 0,999 1,012 1,023 1,035 1,046 1,057 1,067 1,077 1,085 1,093
    55 0,996 1,009 1,021 1,032 1,043 1,054 1,064 1,073 1,082 1,089
    60 0,994 1,006 1,018 1,029 1,04 1,051 1,06 1,069 1,078 1,085
    65 0,991 1,003 1,014 1,026 1,037 1,047 1,057 1,065 1,074 1,081
    70 0,988 1,0 1,011 1,023 1,034 1,044 1,053 1,062 1,07 1,078
    75 0,986 0,997 1,008 1,019 1,029 1,04 1,05 1,058 1,066 1,074
    80 0,983 0,994 1,005 1,016 1,026 1,036 1,046 1,054 1,063 1,07
    85 0,979 0,99 1,001 1,012 1,022 1,032 1,042 1,05 1,059 1,067
    90 0,976 0,987 0,997 1,009 1,018 1,028 1,038 1,046 1,055 1,063
    95 0,973 0,983 0,993 1,005 1,014 1,024 1,034 1,043 1,051 1,059
    100 0,969 0,98 0,99 1,0 1,01 1,02 1,03 1,04 1,047 1,055

    Значения плотности растворов этиленгликоля в воде приведены в г/см3.

    Рейтинг
    ( Пока оценок нет )
    Понравилась статья? Поделиться с друзьями:
    Добавить комментарий

    ;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: