Материал пластин аккумуляторов

Какие сплавы используются в аккумуляторах

Наиболее распространенный тип батарей, которые используются в современных автомобилях, — это свинцово-кислотный аккумулятор. Он назван так, потому что имеет в своем составе решетки, изготовленные из свинцовых сплавов. Свинцово-кислотная батарея получила широкое распространение, поскольку обладает весьма большим ресурсом работы и достаточно высокой удельной мощностью.

Свойства сплавов

Свойства сплава, из которого сделаны токоотводы АКБ, напрямую влияют на характеристики работы самого аккумулятора. Одно из главных требований, которые разработчики аккумуляторов предъявляют к сплаву, заключается в том, что он должен быть достаточно твердым и устойчивым к любым нагрузкам, которым АКБ подвергается в процессе работы. Очевидно, что сплав также должен хорошо проводить электрический ток и обладать рядом свойств, позволяющих без нарушения производственной технологии использовать его в процессе литья.

Существуют определенные требования и к коррозионной устойчивости. Это в особенности актуально для положительных токоотводов, так как именно они подвергаются увеличенным нагрузкам при работе аккумулятора. Под воздействием нагрузок положительная решетка способна не только деформироваться, но и покрыться слоем оксида свинца, который препятствует эффективному прохождению тока.
Посторонние и нежелательные примеси в свинцовом сплаве в целом ухудшают его характеристики и негативно влияют на работу АКБ. Происходит это из-за того, что в процессе коррозии положительной решетки эти примеси становятся частью активной массы и способствуют усилению процесса газообразования, а также стимулируют потерю воды.

Типы сплавов для АКБ

Однако добавки в сплавах, из которых производятся решетки для АКБ, конечно же, есть. Долгое время для производства решеток использовался свинцово-сурьмянистый сплав. Такие токоотводы можно найти в обслуживаемых АКБ. Применение сурьмы позволило сделать сплав более текучим, а значит, удобным для использования в процессе литья. Помимо этого, свинцово-сурьмянистый сплав хорошо проводит ток. Но есть и недостатки: наличие в сплаве сурьмы усиливает процесс газовыделения и приводит к повышенной потере воды в АКБ. Именно поэтому в такой аккумулятор необходимо регулярно добавлять воду.
Со временем появились и необслуживаемые аккумуляторы, в которых содержание сурьмы было снижено, а доля других добавок, наоборот, увеличена (добавки олова, мышьяка, серебра). Это позволило сохранить высокие литьевые свойства сплава и повысить его коррозионную стойкость.

Свинцово-кальциевый сплав, который стал использоваться со временем для производства стационарных аккумуляторов, не нашел широкого применения в автомобильных АКБ. Главным образом это обусловлено быстрым снижением емкости заряда. Однако в необслуживаемых гелевых аккумуляторах для производства отрицательных решеток использовался сплав свинца и кальция, а для производства положительных — малосурьмянистые сплавы. Со временем производители стали добавлять в сплав свинца и кальция олово, что улучшило свойства отрицательных токоотводов и позволило использовать при производстве технологию непрерывного литья.

Современный тренд

Говоря о свинцово-кислотных аккумуляторах, важно отметить, что свинцовые сплавы небезопасны для человека и окружающей среды. Добавки, которые содержатся в таких сплавах (сурьма и мышьяк), при химическом взаимодействии или в условиях избыточного заряда могут способствовать образованию токсичных газов. Во многом именно этим обусловлен тот факт, что при изготовлении свинцово-кислотных аккумуляторов производителям приходится использовать все больше автоматизированных операций.
В целом же современное состояние «аккумуляторного» сегмента довольно очевидно. Достаточно вспомнить о том, что одним из глобальных мегатрендов автомобилестроения является стремительный рост производства электромобилей. Именно поэтому усилия разработчиков АКБ в основ-ном направлены на улучшение характеристик литий-ионных аккумуляторов или АКБ из других сплавов, подходящих для использования в электрокарах и гибридах.

Технологии изготовления аккумуляторов

Гелевые и AGM

Гелевые и AGM аккумуляторные батареи содержат электролит не в «классическом» жидком виде, а в связанном, гелеобразном состоянии (отсюда и название типа батареи). Инженерам на протяжении более чем полторы сотни лет истории аккумуляторных батарей приходилось решать множество проблем, задач. Одной из важнейших проблем было осыпание активного вещества с поверхности пластин-электродов. Этот вопрос временно решили путем добавления в состав оксида свинца различных присадок — сурьмы, кальция и т.д. Еще одной очень важной задачей было обеспечение безопасности эксплуатации батарей, т.к. электролит — водный раствор серной кислоты — мог легко вытечь при повреждении корпуса АКБ. Не надо рассказывать, насколько агрессивным химическим веществом является серная кислота. Необходимо было найти способ не допустить, минимизировать возможность утечки электролита при повреждении корпуса батареи.

Эта проблема была решена путем иммобилизации электролита. В гелевых батареях электролит находится в гелеобразном состоянии. Т.к. гель гораздо более плотный и менее текучий, чем жидкость, это решило сразу обе проблемы — активное вещество уже не осыпалось (плотная окружающая среда фиксировала его) и электролит не вытекал (гель имеет низкую текучесть). Отличие в AGM аккумуляторах в том, что между пластинами-электродами находится специальный пористый материал, дополнительно удерживающий электролит и защищающий электроды от осыпания. Сама аббревиатура «AGM» так и расшифровывается — Absorbent Glass Mat (абсорбирующий стекловолоконный материал, пропитанный электролитом). Благодаря тому, что гель в аккумуляторах находится фактически в зафиксированном состоянии, данные батареи не боятся наклонов. Производители пишут даже, что эксплуатация батареи допустима в любом положении (кроме перевёрнутого). Хотя это лишь маркетинговое высказывание, т.к. все равно не стоит держать AGM и гелевые АКБ в перевернутом состоянии.

Читайте также:
Всё о индексе скорости шин

Отличная виброустойчивость — это не единственное положительное качество AGM и гелевых аккумуляторов. Данные типы батарей имеют низкую скорость саморазряда, благодаря чему их можно хранить долгое время без критического снижения заряда. Хранить следует в заряженном состоянии.

AGM и гелевые АКБ могут выдавать одинаково высокий ток вплоть до полного разряда. При этом они не боятся переразряда, полностью восстанавливая после подзарядки свою номинальную емкость.

Если при разряде AGM и гелевые аккумуляторы менее капризны, чем классические, то с зарядом батарей ситуация совсем иная. Недопустим ускоренный заряд — процесс зарядки AGM и гелевых аккумуляторных батарей должен происходить гораздо меньшим током. Для этого даже используются специальные зарядные устройства, подходящие для зарядки только AGM и гелевых аккумуляторов. Хотя на рынке имеются и универсальные ЗУ, умеющие, по заверениям производителей, производить зарядку всех типов батарей. Насколько это соответствует действительности — необходимо смотреть внимательно, обращая внимание на репутацию и гарантии производителя.

К сожалению, AGM и гелевые батареи при очень низких температурах ведут себя хуже, чем классические. Это связано с тем, что гель становится менее проводимым при снижении температуры. При благоприятных условиях эксплуатации AGM и гелевые аккумуляторные батареи могут работать до 10 лет.

Благодаря своей абсолютной герметичности, относительной виброустойчивости и своей фактической (а не просто маркетинговой) необслуживаемости AGM и гелевые батареи широко применяются там, где классические АКБ использовать опасно или невыгодно: внутри помещений (например, в источниках бесперебойного питания), в мототехнике (мотоцикл, в отличие от автомобиля, едет, периодически отклоняясь от вертикальной плоскости), в морском и речном транспорте (данные аккумуляторы не боятся качки, свойственной судам). Разумеется, AGM и гелевые батареи также применяются и в автомобилях. Чаще всего — в престижных иномарках, что обусловлено довольно высокой ценой этих АКБ (плата за качество и надежность).

Щелочные

Как известно, в качестве электролита в аккумуляторах может использоваться не только кислота, но и щелочь. Существует множество разновидностей щелочных АКБ, но мы рассмотрим только те, что нашли применение в автомобилях.

Автомобильные щелочные аккумуляторы бывают двух типов: никель-кадмиевые и никель-железные. В никель-кадмиевой батарее положительные пластины покрыты гидроксооксидом никеля NiO(OH) (он же гидрат окиси никеля III или метагидроксид никеля), отрицательные пластины — смесью кадмия и железа. В никель-железной батарее положительные пластины покрыты тем же составом, что и в никель-кадмиевой батарее — гидроксооксидом никеля. Отличие лишь в отрицательном электроде — в никель-железном аккумуляторе он сделан из чистого железа. Электролитом в обоих типах аккумуляторов является раствор едкого калия КОН.

Пластины-электроды в щелочных батареях упаковываются в «конверты» из тончайшей перфорированной металлической пластины. В эти же конверты запрессовывается активное вещество. Это позволяет сильно повысить виброустойчивость батарей.

У щелочных АКБ есть интересная особенность: в никель-кадмиевых аккумуляторах положительных пластин на одну больше, чем отрицательных, и находятся они по краям, соединяясь с корпусом. В никель-железных аккумуляторах все наоборот — отрицательных пластин больше, чем положительных.

Еще одной особенностью щелочных батарей является то, что в них при протекании химических реакций не расходуется электролит. По этой причине его требуется меньше, чем в кислотных, где приходится наливать электролит с запасом по причине его «выкипания».

У щелочных аккумуляторных батарей есть ряд преимуществ по сравнению с кислотными:

  • Хорошая переносимость переразрядов. При этом батарея может храниться в разряженном состоянии без потери своих характеристик, чего нельзя сказать про кислотные АКБ.
  • Щелочные батареи относительно легко переносят перезаряд. При этом есть мнение, что их лучше перезарядить, чем недозарядить.
  • Щелочные аккумуляторы гораздо лучше работают в условиях низкой температуры. Это позволяет почти безотказно обеспечивать запуск двигателей в зимнее время.
  • Саморазряд щелочных батарей ниже классических кислотных.
  • Из щелочных АКБ не выделяются вредные испарения, чего нельзя сказать про кислотные АКБ.
  • Щелочные аккумуляторы умеют накапливать больше энергии на единицу массы. Это дает возможность дольше выдавать электрический ток (при тяговом режиме эксплуатации).

Однако у щелочных аккумуляторных батарей есть и недостатки, если сравнивать с кислотными:

  • Щелочные аккумуляторы выдают напряжение меньше, чем кислотные, из-за чего приходится объединять большее количество «банок» для достижения нужного напряжения. По этой причине, при одинаковом напряжении, габариты щелочного аккумулятора будут больше.
  • Щелочные никель-кадмиевые аккумуляторы обладают «эффектом памяти».
  • Щелочные аккумуляторы дороже кислотных.

Щелочные батареи в настоящее время используются чаще в качестве тяговых аккумуляторов, чем стартерных. Из-за своих габаритов большинство выпускаемых стартерных щелочных АКБ — для грузовиков.

Перспектива широкого использования щелочных батарей на легковых автомобилях пока туманна.

Литий-ионные

Литий-ионные аккумуляторные батареи – это то перспективное направление химических источников тока, которое за рубежом уже давно очень активно применяется в энергетике. Плюсы данных решений – неоспоримы. По сравнению с традиционными свинцово-кислотными и щелочными аккумуляторами, литиевые обладают рядом преимуществ, которые востребованы в повседневной жизни: большая энергоемкомкость, меньший вес, меньшие габариты, безопасность, экологичность, быстрое время заряда, большие разрядные токи. (Перечислен не весь перечень). Разновидности литий-ионных аккумуляторов множатся, с каждой новой разработкой улучшая характеристики. В энергетике появление таких АКБ, позволило дать старт развитию рынка накопителей электроэнергии в том числе при эксплуатации ДГУ для экономии топлива при энергоснабжении удаленных поселков, пересмотреть подходы к эксплуатации автономных систем с возобновляемыми источниками энергии таких, как солнечные и ветряные электростанции, позволило переоснастить источники бесперебойного питания, что дало не только экономический эффект, то и позволило решить сложные технические задачи с регулярными веерными отключениями, уменьшить размеры помещения по размещению ИБП, существенно сократить издержки по вентиляции и кондиционированию, увеличить ресурс работы и межсервисные промежутки по техническому обслуживанию и др.

Читайте также:
Экспедиционный багажник на Ниву Шевроле: выбираем лучшее

Типов литий-ионных аккумуляторов уже насчитывается достаточное количество. Вот некоторые из них:

  • LiCoO2 Литий-кобальтовые
  • LiFePO4 Литий-железо-фосфатные
  • LiMn2O4 Литий-марганцевые
  • LiNMC Литий-никель-марганец-кобальтовые
  • LiNCA Литий-никель-кобальт-алюминиевые
  • LiSOCl2 Литий-хлористый тионил
  • Li4Ti5O12 Литий-титанатные

Для работы в составе источников бесперебойного питания нами были выбраны LiFePO4. Литий-железо-фосфатные аккумуляторы, как самые безопасные в эксплуатации. Данные решения актуальны в ИБП мощностью от 10 до 800 кВа и выше.
Сравнительные характеристики аккумуляторов различного типа:

Характери-стики системы Свинцовый Никель-кадмиевый Никель-металл-гидридный Цинк-марганцевый Никель-хлоридный Литий-ионный
Запасаемая энергия, Втч/кг 25-30 36-42 50 70-80 75 80-100 > 100
Удельная мощность, Вт/кг 100-120 148-184 150 220 70-90 > 300
Циклируемость > 500 > 1000 1000 30-100 600-1000 > 2000
Основные преимущества cистемы Дешевизна Хорошая циклируемость. Хорошая циклируемость. Дешевизна. Эффективность Дешевизна. Эффективность Высокие характеристики. Экологичность. Отсутствие. Эффекта памяти.
Основные недостатки Экологическая опасность Экологически вредный. Высокий саморазряд. Эффект памяти. Высокий саморазряд. Взрыво-опасностъ. Низкая мощность. Плохая циклируемость. Сильный саморазряд. Наличие высоких температур. Более высокая стоимость энергии.

При сравнении различных типов аккумуляторов достаточно очевиден факт наилучших технических характеристик у литий-ионных аккумуляторов. Теперь рассмотрим их разновидности и сравним технические характеристики (Рассматриваем решения только с графитовым анодом, т.к. Li4Ti5O12 (Титанат) дорог , а эксплуатация ИБП предусматривается в закрытых теплых помещения) :

Материал катода Li-кобальт
LiCoO2
Li-марганец
LiMn2O4
Li-фосфат
LiFePO4
NMC1
LiNiMnCoO2
Материал анода Графит
Напряжение на ячейке, В 3,60/3,70 3,80 3,30 3,60/3,70
Максимальное напряжение заряда, В 4,20 4,20 3,60 4,20
Ресурс 500-1000 500-1000 1000-3000 1000-3000
Срок службы, год (до 0,8Сн) 4 3 8 6
Рабочая температура (диапазон) Средний Средний Хороший Хороший
Удельная энергия, Вт∙ч/кг 150-190 100-135 90-120 140-180
Удельная энергия, Вт∙ч/л 223 189 261
Максимальный ток, А 1C 10C (40C импульс) 3C (10C импульс) 10C
Саморазряд, %/месяц 1% 5% 0.05% 1%
Стоимость (Дол.США /кВтч) Очень высокая средняя низкая низкая
Безопасность низкая безопасность Умеренно безопасны Безопасны Умеренно безопасны
Тепловой пробой 3 150 °C (302° F) 250 °C (482° F) 270 °C (518° F) 210 °C (410° F)
Год начала производства 1994 1996 1999 2003
Исследователи и производители Sanyo, GS Yuasa, LG Chem, Hitachi, Samsung, Toshiba Hitachi, Samsung, Sanyo, GS Yuasa, LG Chem, Toshiba A123, GS Yuasa, BYD, ATL, Lishen, JCI/Saft Sony, Sanyo, LG Chem, GS Yuasa, Hitachi, Samsung
Заметки Высокая удельная энергия, низкая мощность Высокая мощность, хорошая удельная энергия Высокая мощность, средняя энергия, надежный и безопасный Высокая удельная энергия, высокая мощность

Применение LiFePO4 на начальном этапе в источниках бесперебойного питания определена в основном – безопасностью, если сравнивать с LiNiMnCoO2. Изделия на NMC набирают обороты. Мы так же воспользуемся данным решением при постановке более сложных и более требовательных по техническим характеристикам задач, но пока решения на железо-фосфате достаточны!

Идет непрерывная работа над усовершенствованием существующих типов аккумуляторных батарей. В исследовательских центрах ищут способы увеличения энергоемкости источников питания, что позволит уменьшить размеры аккумуляторов. Для северных районов очень пригодится изобретение морозоустойчивой батареи (и тогда не было бы проблемы отказа завода двигателя в сильные морозы).

Очень важна работа и в направлении обеспечения экологичности, т.к. нынешние технологии производства аккумуляторных батарей не могут обойтись без использования ядовитых и просто опасных веществ (взять хотя бы свинец или серную кислоту).

Вряд ли у традиционных свинцово-кислотных аккумуляторных батарей есть будущее. AGM батареи — это промежуточный этап в эволюции. Аккумулятор будущего не будет иметь в своем составе жидкость (чтобы ничего не вылилось при повреждении), будет иметь произвольную форму (чтобы была возможность использовать все возможные пустоты автомобиля), а также множество других параметров, которые позволят автовладельцам наслаждаться поездкой, а не нервничать по поводу того, что аккумуляторная батарея может отказать в самый неподходящий момент.

Устройство аккумулятора — что внутри и как работает

Принципиально устройство аккумулятора больше чем за 150 лет с момента его изобретения не изменилось, хотя современность внесла серьёзные новшества в технологические процессы их изготовления и используемые материалы, из чего состоит аккумулятор.

Автономный источник энергии

Что такое аккумулятор

Аккумулятор – автономный источник электричества, который накапливает, сохраняет и отдает энергию. Аккумуляторная батарея – важный элемент электрооборудования транспортного средства. Назначение акб определяется в запуске двигателя и обеспечении подачи электричества в бортовую сеть. Все электроприборы, когда выключен мотор, и не работает генератор, работают от батареи. Накопитель помогает в пробке, когда энергии генератора не хватает.

Читайте также:
Подкапотная проводка ВАЗ 2109: инструкция по особенностям эксплуатации и замене своими руками с фото

Устройство и принцип работы аккумулятора

Для того, чтобы разобраться, как работает аккумулятор, необходимо знать устройство акб, что внутри аккумулятора обеспечивает работу прибора. Основной принцип работы аккумулятора заключается в разности потенциалов при погружении двух пластин в электролит. В 12-ти вольтовой батарее объединены шесть аккумуляторов, каждый из которых вырабатывает 2 вольта. Все они объединены совместным корпусом, который образует единое целое конструкции.

Аккумулятор в разрезе

При работе этой конструкции, пластинки из-за действия серной кислоты выделяют сульфат свинца, в результате чего образуется электрический ток. Также выделяется вода, и поэтому концентрация электролита становится менее плотной. Во время зарядки АКБ процесс осуществляется в обратном порядке, свинец снова обретает металлическую форму, электролит становится более концентрированным. Принцип работы аккумулятора основан на методе двойной сульфатации, который позволяет полностью восстанавливать первоначальные свойства батареи. Срок службы аккумулятора зависит от качества используемых материалов, из чего состоит акб.

Схема строения

Схема строения

Виды аккумуляторов

Классификация акб по составу активного вещества

Свинцовые пластины, используемые в старых аккумуляторах перестали устраивать потребителей. Возникала необходимость по улучшению качества работы акб. Сначала добавили сурьму к свинцу, что позволило заметно продлить срок эксплуатации батареи. На следующем этапе – уменьшили процентное содержания сурьмы до оптимальной концентрации. Такой подход привел к созданию малообслуживаемых аккумуляторов, потому что в них уже намного реже требовался долив воды.

При использовании металлического кальция для покрытия пластин появились кальциевые энергосберегающие источники. В предыдущих моделях потери воды из-за электролиза на 12 вольт требовали постоянного долива, а кальций позволил повысить этот порог до 16 вольт. Так появилась возможность в производстве необслуживаемых аккумуляторов использовать герметичный, неразборной корпус.

  • Сурьмянистые батареи относятся к классике из-за повышенного состава сурьмы, которая ускоряет процесс электролиза.
  • В малосурьмянистых акб материалом для пластин служит свинец с небольшой примесью сурьмы. В них степень саморазряда значительно меньше, чем в сурьмянистых АКБ.
  • При производстве кальциевых источников свинцовые пластины легированы до 0,1% кальцием. Они могут иметь различные заряды, как отрицательный, так и положительный.
  • Гибридные источники энергии вытесняют кальциевые. Конструктивные отличия состоят в том, что при их производстве объединили две технологии: одна, когда пластины формируются из сплава свинца и сурьмы, положительные электроды, а другая – когда пластины формируются из сплава свинца и кальция, отрицательные электроды.
  • EFB является улучшенной жидкозаполненной батареей. Свинцовые пластины в ЕФБ аккумуляторах в два раза толще, чем у обычных, вследствие чего увеличивается их ёмкость. Каждая из пластин закрыта в пакет из специальной ткани, который наполнен жидким сернокислотным электролитом.
  • В гелевых аккумуляторах применяется гелеобразный электролит. Такая технология позволила снизить текучесть электролита, в котором содержится агрессивная серная кислота.
  • В литиевых акб используется жидкий электролит, представляющий собой раствор фторсодержащих солей лития в смеси эфиров угольной кислоты.
  • Отличительной особенностью AGM является то, что в электролит с помощью специальной технологии между пластинами вставляются стекловолоконные микропористые прокладки.
  • Во всех щелочных батареях применяется растворенная в воде щёлочь.

Классификация батарей по типу электролита

Электролиты бывают кислотными, щелочными. Щелочные растворы используются в заправке аккумуляторных батарей. Щелочные аккумуляторные жидкости представляют собой сильные основания, которые проявляют большую активность по отношению к металлам и кислотам. При реакциях с кислотами образуются соль и вода. Растворы щелочей подвергаются гидролизу. Химические свойства позволяют использовать этот тип электропроводящей жидкости для накопления электрической энергии в аккумуляторе.

Кислотные смеси с дистиллированной водой применяются в основном в автомобильных аккумуляторах. Такие составы можно приобрести в специализированных магазинах или же приготовить самостоятельно в домашних условиях. На заводе процесс изготовления таких смесей осуществляется в масштабном производстве по ГОСТу. В домашней обстановке также возможно довольно точно при соблюдении обязательных пропорций и правил техники безопасности смешать кислоту с дистиллированной водой.

Важно! вода при минусовых температурах превращается в лед. Всегда при морозе нужно применять меры, необходимые для предотвращения замерзания аккумулятора.

Основные технические характеристики аккумуляторов

Номинальная емкость аккумулятора

Номинальная емкость элемента – способность накапливать и отдавать электроэнергию постоянного тока, определяет время автономной работы ИБП. Емкость электрического аккумулятора показывает время питания подключенной к нему нагрузки.

Важно! Емкость не характеризует полностью энергию аккумулятора, т.е. энергию, которая может быть накоплена в полностью заряженном аккумуляторе. Чем больше напряжение аккумулятора, тем больше накопленная в нем энергия.

Емкость всегда указывается на корпусе АКБ, а также на упаковке, ведь именно по этому критерию большинство пользователей выбирают нужную модель.

Пусковой ток

Величину, характеризующую параметр тока, протекающего в стартере автомобиля в момент пуска силового узла, принято считать пусковым током. Пусковой ток или стартерный возникает в момент, когда в замке зажигания поворачивается ключ и начинает проворачиваться стартер. Единица измерения величины – Ампер. Он же ток холодной прокрутки является показателем, как аккумулятор поведет себя в морозную погоду и сможет запустить двигатель при минусовых показателях. Определяется мощностью тока, которую батарея может выдать в течение первых 30 секунд при температуре -18°С. При высоких показателях пускового тока увеличиваются шансы завести машину при минусовой температуре.

Читайте также:
Что лучше: Лада Гранта, Лада Приора или Лада Калина?

Полярность

Порядок расположения на крышке аккумулятора присоединительных клемм, которые являются токовыводящими соединительными элементами, называется полярностью. Полюса всего два – положительный и отрицательный, вариантов расположения – прямое и обратное.

Прямая полярность – отечественная разработка. Чтобы ее определить, нужно повернуть аккумулятор таким образом, чтобы этикетка была перед глазами. При расположении плюсовой клеммы слева, а минусовой справа, можно утверждать, что акб с прямой полярностью. На иномарках устанавливаются аккумуляторные батареи обратной полярности.

Прямая, обратная полярность

Исполнение корпуса

Корпус большинства аккумуляторов состоит из ударопрочного полипропилена, который характеризуется как материал легкий, не вступающий в химическую реакцию с агрессивным электролитом АКБ. Полипропилен довольно стоек к перепадам температур, возникающих под капотом автомобиля, нагрев может достигать до +60 ̊С, а при морозах до -30°С. Корпус большинства АКБ состоит из ручки для переноса, пробок, индикатора заряда, клемм для подключения к электросети. Вес АКБ емкостью 55Ач около 16,5 кг. Традиционно появились американский, европейский, азиатский и российский типы корпусов.

Европейские корпусы и американские имеют идентичные габариты. Например, у батарей емкостью 60 Ач общая высота от 17,5 до 19 сантиметров. У азиатских этот показатель немного выше, до 22 сантиметров за счет верхнего расположения электродов. Именно поэтому важно корректно анализировать возможности посадочного места под капотом, чтобы надежно закрепить АКБ прижимной планкой и избежать замыкания при случайном касании токоотводами металлических частей кузова.

У АКБ с европейским типом корпуса клеммы находятся в углублении, их верхний край не выступает над плоскостью крышки. Иногда клеммы дополнительно защищены от внешнего воздействия специальными крышечками. Азиатский тип корпуса – это коробка, на которой клеммы расположились на верхней крышке, верхний край клемм является самой высокой точкой аккумулятора. Какую клемму снимать с аккумулятора первой читайте здесь.

Важно! При приобретении акб нужно знать, что европейские производители указывают габаритные размеры аккумулятора по корпусу. На азиатских корпусах могут указывать высоту батареи с учетом клемм или без них.

Российский стандарт акб

Обозначение Описание букв
А АКБ имеет общую крышку для всего корпуса
З Корпус батареи залит и она является полностью заряженной изначально
Э Корпус-моноблок АКБ выполнен из эбонита
Т Корпус-моноблок АБК выполнен из термопластика
М В корпусе использованы сепараторы типа минпласта из ПВХ
П В конструкции использованы полиэтиленовые сепараторы-конверты

Европейские корпусы и американские имеют идентичные габариты

Тип и размер клемм

Распространены аккумуляторы с клеммами трех разных стандартов: тип Euro – T ype 1, и Asia –Type 3, «под болт» – американский стандарт. В типе Euro плюсовая клемма имеет диаметр 19,5 мм, минусовая клемма – 17,9 мм. В типе Asia клемма плюс имеет диаметр 12,7 мм, клемма минусовая – 11,1 мм. Клеммы «под болт» находятся на боковой стенке аккумулятора и сверху. Болт, соединённый с проводом, продевается в отверстие клеммы и фиксируется гайкой.

Американский стандарт

Тип крепления

При выборе акб особое внимание следует обращать на тип крепления АКБ, при котором батарея может крепиться снизу или сверху. Вверху крепится элемент с помощью специальной монтажной рамки, которая охватывает аккумулятор. Крепление аккумулятора происходит с помощью планки и двух шпилек. Чаще такой вид установки и фиксации аккумуляторной батареи встречается на автомобилях китайского или корейского производства.

Тип крепления встречается на «азиатах»

Нижнее крепление применимо на европейских автомобилях. На нижней части корпуса акб находится выступ, за который аккумулятор прижимается к платформе с помощью пластины и винта.

Нижнее крепление

Назначение аккумуляторных батарей

Автомобильная аккумуляторная батарея выступает как источником электрического тока, необходимого для пуска двигателя, так и резервным источником питания, в случае, если энергии, вырабатываемой генератором, оказывается мало для электроснабжения авто. Аккумуляторная батарея действует как стабилизатор напряжения, так как она выполняет роль накопителя электроэнергии, отдающего во время пуска двигателя за короткое время большой ток, и пополняемого постепенно генератором автомобиля в процессе подзарядки.

Важно! Перед проверкой системы электроснабжения и электрического пуска, необходимо убедиться в том, что аккумуляторная батарея находится в заряженном состоянии и готова к эксплуатации.

В каких сферах используется

Аккумуляторные батареи используются как дополнительный или основной источник питания. Надежность, простота в использовании позволяет применять батареи в различных областях:

  • автомобильная промышленность;
  • освещение в аварийном состоянии;
  • переносное электрооборудование;
  • медицинское оборудование;
  • игрушки;
  • сигнализация в разных сферах применения;
  • телекоммуникационное оборудование.

Применение батареи в игрушках

Роль акб в работе приборов не оспорима. Применение источника энергии практически во всех отраслях доказывает значимость и необходимость знаний о внутреннем содержимом батарей. С использованием в автомобилях широкого разнообразия электроприборов, кондиционеров, мультимедийных центров, генераторы не всегда справляются с обеспечением их энергией. В этом случае подпитка энергией поступает от АКБ, который кроме этого выполняет основную функцию, обеспечивает электроэнергией стартер двигателя. Водителю необходимо знать, как устроен аккумулятор, чтобы выявить сбои в работе источника энергии, назначение аккумулятора, чтобы правильно использовать ресурс, подобрать батарею к условиям эксплуатации и автомобилю. О способах и рекомендациях как проверить аккумулятор читай тут.

Читайте также:
Советы для обладателей снегоходов Тайга и Буран

Эволюция аккумуляторов: от эбонита к графену

Сегодня мы отправимся в увлекательную историю развития аккумуляторов, батарей и элементов питания.

Человечество никогда не стояло на месте. С древних времен наших предков интересовал целый спектр всевозможных физических и химических явлений. Ученые постоянно открывали что-то новое. Такое ноу-хау, как правило, сперва напрочь отрицалось наукой, затем о нем забывали, а спустя несколько десятилетий, уже забытого всеми ученого восхваляли и называли «человеком, который изменил мир». Наверняка вы читаете эти строки с устройства, работающего от розетки или имеющего в своем распоряжении один из важнейших элементов – аккумулятор. И если бы 2 700 лет назад древнегреческий философ Фалес не обратил внимание на взаимодействие шерсти и янтаря, если бы в 1600 году не был введен термин электричество, а в 1800 Аллесандро Вольта не заинтересовался пластинами из цинка и меди, возможно современный мир был намного скучнее.

С чего все началось

Наука средневековья – весьма спорное и запутанное явление. Тем не менее, именно существование целого ряда схоластических теорий породило такое понятие, как научно-технический прогресс. До появления первых аккумуляторов пройдет еще более 2,5 тысяч лет, а пока в солнечной Греции дочь философа Фалеса безуспешно пытается очистить янтарное веретено от мелких частичек ворса, ниток и пыли. Как оказалось, смахнуть их не так-то просто.

Во время правления английской королевы Елизаветы I (1533 – 1603) ее лейб-медик Вильям Гильберт Колчестерский всерьез заинтересовался устройством компаса, магнитами, янтарем и прочими драгоценными камнями, которые после натирания мехом притягивали к себе мелкие частички пергамента. Становилось понятным, что несмотря на определенную схожесть, магнетизм и электричество (термин, введенный самим Гильбертом) имеют совершенно разную природу. Магнит способен притягивать исключительно железо, в то время как электричество, вызванное трением, способно к притяжению частичек неметалического происхождения.

Понятие «притяжение» в средневековье относили к категории «магнитов». Все дополняющие друг-друга явления, вроде ветра и мельницы, солнца и тепла, мужчины и женщины относили к магнитам. Ненависти собак и кошек, друзей и врагов, льда и огня приписывали категорию «феамидов», а в магнетизме это понятие подтверждалось северным и южным полюсами магнита. С появлением электричества «магниты» и «феамиды» станут знакомы по маркировкам «плюс» и «минус», которые можно найти на любом аккумуляторе.

В последующих опытах бургомистра Отто Фон Герике в качестве источника электричества использовался шар из серы. Во время вращения его придерживали руками, а скапливающийся электрический заряд передавался металлическому бруску, который в последствии назовут «лейденской банкой» – главный атрибут престижной средневековой лаборатории, который и стал прообразом современного аккумулятора.

После введения понятия электричество в 1600 году и вплоть до начала XIX века по Европе прокатилась буря опытов, связанных с изучением материалов, способных вызывать так называемый «универсальный временный магнетизм». Тем временем во Франции проводил свои эксперимент ученый, имя которого навсегда осталось нераздельно связанным с любым электрическим прибором.

Великий Вольт

Желая понять природу электричества и в прямом смысле слова «почувствовать его вкус», Алессандро Вольта экспериментировал с монетами, изготовленными из разных металлов. Положив одну из них на язык, а другую под, и соединив их проволокой, Вольта отмечал присутствие характерного кисловатого привкуса. Так острота вкусовых рецепторов человека привела к открытию гальванического электричества, явления, которое еще в середине XVIII века описывал итальянский врач, анатом и физик Луиджи Гальвани, проводя опыты по препарированию лягушек.

Следующим шагом стало конструирование первой электрической батареи, принцип работы которой заключался в погружении медных и цинковых пластин, соединенных последовательно, в раствор кислоты. Изобретение первого химического источника тока, полученного в лабораторных условиях, принято датировать 1798 годом, а его автором стал Аллесандро Вольта.

В течение последующих пяти лет в области исследования гальванических батарей начнется настоящий ажиотаж. 1801 год ознаменовался появлением кратковременного источника питания. Проводя опыты, Готеро (франц. физик), используя воду, платиновые электроды и ток, доказал, что даже после прекращения подачи тока, электроды продолжают излучать электричество. Два года спустя, немецкий химик Иоганн Риттер, заменив платиновые электроды на медные и сформировав из них цепочку пластин, переложенных кусками сукна, сконструировал первый вторичный элемент питания – иными словами, первую аккумуляторную батарею, способную сперва накапливать заряд, а потом постепенного его отдавать без участия «гальванической подпитки».

Пятьдесят медных кружков, смоченной в соленом растворе сукно и вольтов столб положили начало эры аккумуляторов с возможностью многократного цикла заряд-разряд. Появляется новая наука – электрохимия. Начатые в 1854 году немецким врачом Вильгельмом Зингстеденом опыты по использованию свинцовых электродов и их поведению в серной кислоте, спустя пять лет вылились в знаменательное открытие французского инженера Гастона Планте. В 1859 году Планте проводил исследования с листовым свинцом, свернутым в трубочку и разделенным полосами сукна. При погружении в подкисленную воду и под действием тока, свинцовые пластины покрывались активным действующим слоем. Многократное пропускание тока приводило к постепенному росту емкости первой свинцово-кислотной батареи, но рутинное осуществление этого трудоемкого процесса (на изготовление требовалось около 500 часов) приводило к росту конечной стоимости аккумулятора. Более того, потенциальный заряд аккумулятора был сравнительно невелик.

Читайте также:
Как надеть шины на диски самостоятельно

Наследие Зингстедена и Планте будет усовершенствовано через 23 года ученным Камиллом Фором, пересмотревшим процесс изготовления используемых в аккумуляторе пластин. Ускорить формирование активного слоя стало возможным благодаря покрытию пластин окислами свинца. Под действием тока вещество превращалось в перекись, а полученные окислы приобретали пористое строение, способствующее аккумулированию газов на электродах.

Параллельно с разработкой и совершенствованием свинцово-кислотных батарей велась работа и над построением «влажных» элементов Лекланше и их преемников угольно-цинковых аккумуляторов, предложенных в 1888 году Карлом Гасснером и использующихся вплоть до сегодняшнего дня.

В течение длительного периода времени аккумуляторы, электрохимия и все, что было связано с использованием кислых сред, пластин и гальванического электричества будоражило умы исключительно ограниченного круга – ученых, физиков, химиков и врачей. Ситуация кардинально изменилась с появлением в 1827 году динамо-машины – первого электрического генератора постоянного тока. Эволюция генераторов, в свою очередь, подталкивала развитие аккумуляторов и батарей. Узкопрофильные опыты Вольта наконец начали получать промышленное применение.

Промышленная эра аккумуляторов

В 1896 году на территории США, в штате Колумбия открывается компания National Carbon Company (NCC). NCC становится первым предприятием специализацией которого становится серийное производство сухих элементов и батарей. В последующие сто лет Национальную Угольную компанию ждет две стадии ребрендинга: сперва NCC станет Eveready, а сегодня мы знаем ее под именем Energizer.

Предложенный Фором метод заполнения пластин в течение продолжительного времени будет являться основой для построения практически любого типа аккумулятора. В поисках альтернативы морально устаревшему (еще по меркам конца XIX века) свинцово-кислотному аккумулятору и попытках решить две основных проблемы этого некогда революционного источника питания (огромный размер и малоэффективная емкость), в 1901 году легендарный изобретатель Томас Эдисон и Вальдмар Юнгнер одновременно патентуют несвинцовый тип батарей: никель-кадмиевых и никель-железных.

Батарея Юнгнера состояла из положительной пластины, изготовленной из никеля. В качестве отрицательной использовался лист кадмия. Значительное повышение емкости, многократное снижение веса и неприхотливость к регулярности подзарядки не смогли выдержать практического применения в связи с дороговизной процесса изготовления никель-кадмиемых аккумуляторов. Достойной заменой стал предложенный Эдисоном никель-железный элемент, который получил имя щелочного аккумулятора.

Развитие эры электричества, появление мощных промышленных генераторов, трансформаторов и глобальная электрификация приводит к резкому росту популярности портативных элементов питания. Щелочные батареи начинают использовать в корабле- и машиностроении, в транспорте и на электростанциях. На улицах появляются первые электромобили, а конструкторы уже успели сформировать принципы построения аккумуляторных батарей с различным вольтажом.

В поисках идеального корпуса

Опыты с электричеством и попытки построения первых батарей нераздельно были связаны с использованием кислоты или кислой водной среды. Любая жидкость для успешного проведения эксперимента требует соответствующий сосуд, а сбор аккумулятора – свой собственный корпус.

В течение продолжительного времени корпус аккумуляторов изготавливался из дерева. Увы, реакции, происходящие в моменты окисления электродов, и кислотная среда батарей приводили к быстрому разрушению органической оболочки. Дерево заменяют на эбонит – каучук с большим содержанием серы, обладающий высокими электроизоляционными свойствами.

Общепринятым стандартом, использующимся при построении составных аккумуляторов начала XX века, было формирование батареи из нескольких элементов, рабочее напряжение которого составляло 2,2 вольта. Первые «пальчиковые батареи» появились еще в далеком 1907 году. С тех пор внешне они мало в чем изменились. Аккумулятор с напряжением в 6 вольт (три элемента по 2,2 В) оставался эталонным при производстве автомобилей вплоть до начала 50-х годов. Элементы на 12 и 24 Вольта имели более узкую специализацию. В первой половине прошлого века об эстетике в машиностроении никто не задумывался, поэтому любой аккумулятор выглядел весьма неряшливо. Эбонитовый корпус с напичканными элементами и грубыми торчащими перемычками намертво заливался мастикой.

Изобретение немецких ученых Шлехта и Аккермана и демонстрация в 1932 году процесса изготовления прессованных пластин для аккумуляторов не могло не повлиять на внешний вид батарей. В 1941 году в производство корпусов вмешивается австрийская компания Baren, проводившая серию экспериментов по разработке синтетических материалов. Через шесть лет француз Нойман предлагает конструкцию герметичного никель-кадмиевого аккумулятора. Параллельно с этим вся промышленность переходит на батареи с напряжением в 12 вольт, а синтетически полученный американской компанией Johnson Controls полипропилен становится основой для изготовления корпуса любых аккумуляторов. Они стали легче, практичнее, перестали бояться ударов и строгих ограничений при подзарядке.

Читайте также:
Как провести ремонт рулевой рейки ВАЗ 2110, 2112

Настоящее и обозримое будущее

Дальнейшее развитие индустрии аккумуляторных батарей движется настолько стремительно, что проследить за той чередой открытий, которые пришлись на последние пятьдесят лет практически невозможно. На сегодняшний день существует более 30 разновидностей аккумуляторов при построении которых используются два различных электрода, чем и определяется их название: никель-цинковые, литий-титанатные, цинк-хлорные. Среди этого обилия в быту мы сталкиваемся лишь с несколькими.

Причина, по которой мобильные устройства начали свою стремительную эволюцию лишь с начала 90-х годов XX века и за последние 35 лет превратились из громоздких и неповоротливых «чемоданов» в ультракомпактные плоские коробочки, кроется именно в элементах питания.

В 1991 году компания Sony выпускает первый литий-ионный аккумулятор. Этот тип портативных батарей пришел на смену некогда широко использовавшимся никель-кадмиевым (Ni-Cd) и никель-металлгидридным (Ni-MH), изобретенных еще в начале прошлого века.

Литий-ионные аккумуляторы имеют целый ряд преимуществ: они заряжаются на порядок быстрее никелевых, имеют более продолжительный срок эксплуатации и большой запас емкости. Li-ion-аккумуляторы получили широкое распространение в сфере портативной электроники, а предложенные инженерами решения позволили не только значительно увеличить максимальные токи разряда, сделавшие возможным использование этого типа аккумуляторов и в среде мощного оборудования, но и обеспечить внушительный рост емкости.

Несмотря на то, что сегодня мы ощущаем некое отсутствие прорыва в области портативных аккумуляторов, вынуждены ежедневно подзаряжать мобильные устройства и жить в режиме «от розетки к розетке», на сложившую ситуацию можно посмотреть и с более положительной стороны.

Одним из главных двигателей прогресса всей индустрии аккумуляторов стали попытки построения электротранспорта в начале позапрошлого столетия. Не стоит забывать, что электромобиль создан значительно раньше двигателя внутреннего сгорания. Внушительные по размеру тяжеловесные свинцово-кислотные батареи продолжают обеспечивать работу троллейбусов, трамваев, электропогрузчиков и тягачей. Бытовые инструменты с никель-кадмиевых элементов постепенно переходят на литий-ионные и литий-полимерные.

Прорыв в сфере использования литиевых аккумуляторов осуществила и компания Tesla, запустившая производство собственной линейки электроавтомобилей (читайте в статье «Революционер индустрии. История компании Tesla»). В конце апреля 2015 года Tesla представила и аккумуляторы для дома – решение для обеспечения автономности за счет получения энергии через солнечные панели. О целесообразности и эффективности данного решения мы поговорим в следующей статье, а пока нам остается надеяться на скорейшее развитие графеновых аккумуляторов. Аккумуляторов, которые уже сегодня называют «убийцами литий-ионного чуда», способных за 8 минут подарить владельцу автомобиля 1000 километров пробега. Увы, эта страница истории пишется в настоящее время. Но долгожданный технологический прорыв близок как никогда.

Виды, устройство и принцип работы автомобильного аккумулятора

Электрические аккумуляторные батареи применяются в любом автомобиле и представляют собой автономный источник питания. АКБ накапливает энергию, которая затем питает бортовую сеть, когда это необходимо, и подает ток на стартер для запуска двигателя.

  1. Назначение аккумулятора в автомобиле
  2. Параметры АКБ
  3. Устройство аккумулятора
  4. Корпус и крышка
  5. Пластины
  6. Электролит
  7. Сепаратор
  8. Клеммы и пробки
  9. Принцип работы
  10. Зарядка, хранение и зависимость от температуры
  11. Разновидности аккумуляторов
  12. EFB
  13. AGM
  14. Гелевые

Назначение аккумулятора в автомобиле

Автомобильный аккумулятор принято обозначать аббревиатурой АКБ, что значит аккумуляторная кислотная батарея. Не все батареи относятся к этому типу, но в автомобилях наиболее распространены именно они.

Автомобильный аккумулятор

Аккумулятор является важным компонентом в работе любого транспортного средства. Он выполняет следующие основные функции:

  1. Подача электроэнергии на стартер для запуска двигателя. Аккумулятор способен в течение 30 секунд подавать пусковой ток или ток холодной прокрутки на стартер, который, в свою очередь, запускает двигатель.
  2. Питание бортовой сети в случае недостаточной мощности (производительности) генератора.
  3. Автономное питание бортовой сети автомобиля.

Каждый аккумулятор имеет определенную емкость и заряд. При работе двигателя всю нагрузку на электропитание берет на себя генератор. Он же заряжает аккумулятор во время движения. Если мощности не хватает, подключается батарея. Определенное время АКБ может обеспечить автономное питание.

Генератор выходит на оптимальный режим производительности при достижении двигателем частоты вращения коленчатого вала 1600-1800 об/мин и более.

Располагается АКБ, как правило, в подкапотном пространстве автомобиля или закреплен на раме в случае крупного грузового транспорта. Это связано с тем, что кислота, находящаяся внутри, очень агрессивна и опасна для здоровья. Она может просочиться через корпус или выделиться в виде газа. С аккумулятором следует обращаться осторожно.

Более безопасны необслуживаемые АКБ, внутри которых нет жидкого электролита. Такие батареи практически не выделяют вредных паров и их можно использовать где угодно. Среди альтернативных мест размещения аккумулятора можно выделить багажное отделение и под сиденьем водителя.

Параметры АКБ

Обычная автомобильная батарея выдает напряжение в 12В. Этого хватает для питания бортовой сети. Для большегрузных автомобилей используются батареи с напряжением в 24В. По сути, это две обычные батареи, которые последовательно соединены. Емкость АКБ измеряется в Ампер-часах (А*ч). Для легкового транспорта емкость батареи находится в пределах 40-130 А*ч. Емкость показывает, какое время аккумулятор сможет давать энергию при нагрузке. Но эти величины измеряются при определенной нагрузке и при определенной температуре – 20°C. При других условиях параметры могут меняться.

Читайте также:
Регулировка сцепления на ВАЗ 2101-ВАЗ 2107

Также важным показателем является ток холодной прокрутки или пусковой ток. Разные модели способны выдавать от 250А до 1300А. Ток холодной прокрутки – это то напряжение, которое способен отдать АКБ в течение 30 секунд при температуре 18°C. В иных условиях данный параметр может поменяться, например, зимой.

Устройство аккумулятора

На самом деле, стандартный аккумулятор – это шесть маленьких аккумуляторов, заключенных в один корпус. Шесть отсеков объединены в едином корпусе. Часто их называют банками. Каждая банка дает напряжение в 2,1В – 2,2В. Шесть банок соединены последовательно толстыми свинцовыми перемычками, что в итоге дает напряжение в 12,6В – 13,2В.

Устройство автомобильного аккумулятора

Автомобильный аккумулятор состоит из следующих основных элементов:

  • пластиковый корпус;
  • крышка;
  • отрицательные пластины (электроды);
  • положительные пластины;
  • перемычки, соединяющие отсеки;
  • жидкий электролит;
  • сепараторы;
  • положительный и отрицательный вывод (клеммы);
  • заливные пробки.

Корпус и крышка

Корпус и крышка выполнены из пластика, который нейтрален к кислоте. В каждой банке находятся свинцовые пластины – электроды.

Пластины

Отрицательная пластина из губчатого свинца (Pb) называется катод, положительная пластина пористая с диоксидом свинца (PbO2) – анод. Чтобы батарея разряжалась не так быстро, используется не чистый свинец, а с применением разных присадок. Ранее добавляли 5% сурьмы, но процесс сульфатации все равно проходил быстро. В современных жидкостных аккумуляторах добавлен кальций. Он значительно снижает процесс сульфатации и повышает емкость АКБ до 70%. Если говорить про гелевые или AGM аккумуляторы, то в них применяется только чистый свинец. Это позволяет повысить мощность и отдаваемый пусковой ток до 1000-1300А.

Электролит

В каждой банке залит электролит. Это смесь серной кислоты и дистиллированной воды, в соотношении 35:65. Плотность электролита находится в пределах 1,23-1,31 г/см3. Чем она выше, тем батарея более устойчива к морозам.

Сепаратор

В простых жидкостных аккумуляторах между пластинами находится сепаратор. От слова “separate” – разделять. Обычно сепараторы изготавливаются из нейтрального пластика. Эти пластины разделяют положительные и отрицательные электроды от замыкания. Материалом для сепараторов служит ревертекс или эбонит. Также эти элементы иногда называют диэлектрической прослойкой.

В более современных необслуживаемых аккумуляторах в качестве сепараторов применяется микроволокно. Этот высокотехнологичный материал удерживает электролит внутри и не дает ему вытекать и испаряться. Пластины завернуты в микроволокно как в конверте и плотно прижаты друг к другу.

Клеммы и пробки

Клеммы аккумулятора также изготавливаются из свинца. К ним присоединяются контакты. На обслуживаемых аккумуляторах на корпусе располагаются заливные пробки. Их количество равно количеству банок. Они служат для заливки дистиллированной воды в случае необходимости.

Принцип работы

Между пластинами и электролитом непрерывно происходит электрохимическая реакция. При разряде химическая энергия преобразовывается в электрическую, а при заряде, наоборот, – электрическая в химическую. Когда аккумулятор подключен к потребителям энергии, то происходит его разрядка.

Химическая формула реакции

Происходит следующий процесс. На катоде идет восстановление диоксида свинца. Свинец на аноде окисляется. Серная кислота вступает в реакцию с металлами на обеих пластинах. При этой реакции образуется сульфат свинца. Процесс называется сульфатацией. Из серной кислоты выделяется водород, который затем вступает в реакцию с кислородом из положительно заряженной пластины. Образуется вода, а серная кислота расходуется. Плотность электролита понижается. Процесс реакции показан на картинке.

При зарядке весь процесс происходит в обратном порядке. Серная кислота восстанавливается. Вновь образуется диоксид свинца и серная кислота. При полной зарядке плотность электролита должна быть в пределах 1,29 гр/см3. Это значение показывает уровень содержания серной кислоты на один кубический сантиметр электролита.

Таким образом, работа батареи основана на циклах заряд-разряд. Если допустить глубокий разряд, процесс может быть необратимым. Останется только вода и сульфат свинца. Поэтому нужно всегда следить за уровнем заряда.

Зарядка, хранение и зависимость от температуры

После того как автомобильный аккумулятор запустил стартер и двигатель, происходит его зарядка от генератора. В снятом положении батарея заряжается зарядным устройством. Хранить аккумулятор с жидким электролитом можно только в строго горизонтальном положении и при определенной температуре 5°С -15°С. Это обусловлено тем, что электролит может вытечь, а осыпавшиеся пластины замкнуть на дне банки.

Разная температура также влияет на работу АКБ. При высокой температуре показатели мощности и токоотдачи высокие, но батарея быстрее разряжается и повышается расход воды. Электролит по своему составу не замерзает при минусовой температуре, но на сильном морозе он все же может это сделать. В мороз химические процессы замедляются, пусковой ток снижается, падает емкость батареи. Вот почему у водителей часто возникают проблемы с запуском двигателя зимой.

Разновидности аккумуляторов

Современные аккумуляторные батареи можно условно разделить на обслуживаемые и необслуживаемые.

Можно выделить следующие основные виды:

  • АКБ с жидким электролитом.
  • EFB аккумуляторы.
  • AGM.
  • Гелевые.
Читайте также:
Тюнинг ЛУАЗ: описание с фото, отзывы

Аккумуляторы с жидким электролитом относятся к обслуживаемому типу. Это значит, что время от времени нужно следить за уровнем электролита, его плотностью и емкостью батареи. Их срок службы в среднем составляем 3-5 лет. Они доступны по цене и хорошо справляются со своей задачей в автомобиле. Поэтому остаются самыми распространёнными.

Батареи по технологии EFB появились сравнительно недавно. В них также находится жидкий электролит, но пластины завернуты в микроволокно. Материал впитывает электролит, что увеличивает площадь контакта с пластинами. Это также повышает емкость и мощность и позволяет снизить объем электролита по сравнению с обычными АКБ, делая такие батареи практически необслуживаемыми. Срок службы 4-5 лет. Стоимость приемлемая.

Аккумуляторы AGM относятся к классу необслуживаемых батарей. Это значит, что у них полностью герметичный корпус. На корпусе имеются газоотводные клапаны. Между пластинами находится стекловолокно, в порах которого электролит. Это позволяет значительно замедлить процесс сульфатации. Такие батареи не боятся полного разряда. Срок службы до 10 лет. Но есть минусы: высокая стоимость и обслуживание.

Гелевые

Это также необслуживаемые батареи. В электролит добавлены вещества, которые сгущают его и доводят до твердого состояния. Сам электролит выступает в роли сепаратора между пластинами. Срок службы до 10 лет, но требуется специальный уход, как и в случае с AGM. Не боятся глубокого разряда, но чувствительны к перезаряду и замыканию. Стоят в 3-4 раза дороже обычных.

Аккумуляторная батарея – это то устройство, которое требует от водителя внимания. Чтобы батарея прослужила долго, нужно знать ее устройство и принцип работы. При правильном уходе и условиях содержания АКБ проработает долгие годы.

Рубрика «Ниссан»

Информация о предохранителях и реле для всех моделей ниссан

Ниссан Х Трейл Т30 — предохранители и реле

Nissan X-Trail T30, первое поколение Ниссан Х Трейл, выпускался в 2001, 2002, 2003, 2004, 2005, 2006 и 2007 году. За это время модель прошла рестайлинг. В данной статье Вы найдёте описание предохранителей и реле Ниссан Х Трейл Т30 с расшифровкой, фото примерами и схемами блоков. Отметим предохранитель прикуривателя. Назначение элементов может отличатся от представленного и …

Ниссан Х Трейл Т32 предохранители и реле

Nissan X-Trail T32 представляет 3 поколение х трэил. Выпускался в 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021, 2022 году как с бензиновыми так и дизельными двигателями. За это время модель прошла рестайлинг. В данном материале вы найдёте описание предохранителей и реле Ниссан Х Трейл Т32 со схемами блоков и местами их расположения. Выделим предохранитель …

Nissan X Trail T31 — предохранители и реле

Nissan X Trail T31 компактный кроссовер, который выпускался в 2008, 2009, 2010, 2011, 2012 и 2013 году. За это время модель прошла рестайлинг. В данной статье Вы найдете информацию с описанием блоков предохранителей и реле Ниссан Х Трейл T31, а так же их фотографии и схемы. Отдельно выделим предохранитель отвечающий за прикуриватель. Обращаем Ваше внимание, …

Ниссан вингроад блоки предохранителей и реле

Nissan Wingroad — грузопассажирский автомобиль, получивший широкую популярность на территории дальнего востока. В народе известен под названием виноград из за схожего произношения на русском языке: ниссан вингроад либо ниссан вингроуд. Продается так же в странах Южной Америки. Первое поколение Y10 выпускалось в 1996, 1997 и 1998 году. В 1999, 2000, 2001, 2002, 2003, 2004 и 2005 году производилось 2-е …

Ниссан альмера тино — предохранители и реле

Nissan Tino — компактвэн который выпускался на базе автомобиля ниссан альмера в 1999, 2000, 2001, 2002, 2003, 2004, 2005 и 2006 году. На территории СНГ можно встретить как модели собранные в Европе так и в Японии. Они не идентичны на 100%. У них присутствуют различие в конструктивных элементах и электроники. В нашем материала мы покажем наиболее …

Ниссан тиида — предохранители и реле

Nissan Tiida — компактный автомобиль С — сегмента. Первое поколение С11 выпускалось в 2004, 2005, 2006, 2007, 2008, 2009 и 2010 году. С12 второе поколение производилось в 2011, 2012, 2013 и 2014 году. С 2015 и по настоящее время в продаже третье поколение С13. В связи с низким спросом на данную модель официальные продажи в …

Ниссан Террано предохранители и реле

Nissan Terrano относится к классу внедорожников. До 2013 года в Россию официально не поставлялся. Поэтому 1 и 2 поколения очень часто можно встретить с правым рулём. В 2014 году, с запуском производства в подмосковье, поступило в продажу на территории СНГ 3-е поколение. Данный автомобиль собирается по настоящее время на базе Рено Дастера. Мы покажем фотографии …

Ниссан теана — предохранители и реле

Nissan Teana выпускается с 2003 года по настоящее время. J31, первое поколение, выпускалось в 2004, 2005, 2006, 2007 и 2008 году. Второе поколение j32 в 2009, 2010, 2011, 2012 и 2013 году. Третье поколение j33 производилось в 2014, 2015, 2016, 2017, 2018, 2019 годах. Каждое из них проходило рестайлинг. В нашем материале вы найдете описание предохранителей …

Читайте также:
Регулировка сцепления на ВАЗ 2101-ВАЗ 2107

Nissan Note — предохранители и реле

Nissan Note относится к субкомпактвэнам. Первое поколение обозначается как Е11 и выпускалось в 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012 и 2013 года. За этот период автомобиль прошел рестайлинг. Второе поколение E12 выпускается с 2014 года. В Россию официально не поставляется. Мы представляем для ознакомления информацию о местах расположения всех основных электронных блоков управления. Особое …

Nissan sunny — предохраните и реле

Nissan Sunny выпускается в 12-и поколениях с 1966 года и поставляется во все регионы земли под различными названиями. Например в США последнее поколение известно под названием Sentra. В западной Европе продавались под марками Nissan Pulsar и Nissan Almera. В данной публикации Вы сможете найти описание блоков предохранителей и реле ниссан санни B15 (одиннадцатого поколения) которое постуло в производство с 1998 года. …

  • Cитроен
  • Ravon
  • Альфа ромео
  • Ауди
  • БМВ
  • Другие
  • Дэу
  • Киа
  • Лада
  • Мазда
  • Митсубиси
  • Ниссан
  • Опель
  • Пежо
  • Рено
  • Сузуки
  • Тойота
  • Фольксваген
  • Форд
  • Хендай
  • Хонда
  • Шевроле
  • Шкода

Блок предохранителей Nissan Qashqai

Большинство цепей питания электрооборудования автомобиля защищено предохранителями. Фары, электродвигатели вентиляторов, топливный насос и другие мощные потребители тока подключены через реле. В данной статье рассмотрены автомобили Nissan Qashqai с 2007 и Nissan Qashqai+2 с 2008 года выпуска

Где находится монтажный блок реле и предохранителей.

1. В салоне под крышкой в проеме нижней облицовки панели приборов.

Для получения доступа к монтажному блоку расположенному в салоне, потяните за ручку крышки.

На внутреннюю сторону декоративной крыш­ки нанесена схема расположения и назначе­ние предохранителей.

Назначение предохранителей и реле в монтажном блоке, расположенном в салоне

Номер предохра­нителя / реле

Предохранители

Аудиосистема, электропривод наружных зеркал

Кондиционер, электрообогреватель салона

Датчики вариатора (механическая КП)

Блок управления электрооборудованием салона

Розетка задняя (если установлена)

Блок управления электрооборудованием салона

Моторедуктор стеклоочистителя ветрового окна

Подушки безопасности системы SRC

Реле

Дополнительное оборудование салона

Снятие заднего монтажного блока под капотом

Отожмите фиксатор заднего монтажного блока.

Приподнимите монтажный блок из кор­пуса и разверните блок для удобной работы с ним.

Нажмите на фиксатор колодки жгута проводов

…и отсоедините колодку от монтажного блока.

Аналогично отсоедините вторую колодку проводов в передней части монтажного блока

отсоедините колодку проводов в левой части

и колодку проводов в задней части монтажного блока.

Отожмите отверткой фиксатор колодки жгута проводов

и отсоедините колодку от разъема монтажного блока

Нажав на фиксатор, отсоедините колодку силовых проводов от монтажного блока и снимите блок.

Установите блок предохранителей в порядке, обратном снятию.

На стенку монтажного блока реле и предо­хранителей, расположенного в моторном от­секе, нанесены обозначения предохраните­лей и защищаемые ими цепи

Как заменить предохранитель Nissan Qashqai

Снимите пинцет с держателя монтажного блока, расположенного в салоне автомобиля.

Захватите пинцетом предохранитель

и извлеките его из контактного разъема (для наглядности показано на снятом заднем монтажном блоке).

Установите в контактный разъем предохранитель того же номинала, что и снятый

Для замены предохранителей заднего монтажного блока в моторном отсеке удобнее пользоваться пассатижами с тонкими губками

Задний монтажный блок, расположенном в моторном отсеке

Реле топливного насоса (бензонасоса) встроено в этот блок.

назначение предохранителей и реле в заднем монтажном блоке, расположенном в моторном отсеке

Номер предохра­нителя / реле

Предохранители

Обогреватель стекла двери задка, обогреватель зеркал заднего вида

Очиститель ветрового стекла

Лампа ближнего света правой фары

Лампа ближнего света левой фары

Лампа дальнего света правой фары

Лампа дальнего света левой фары

Лампы габаритных огней

Блок управления двигателем

Лампы света заднего хода

Система управления двигателем

Система питания (топливные форсунки)

Гидроэлектронный блок ABS

Реле

Реле системы зажигания

Реле обогреватель стекла двери задка

Реле малых оборотов вентилятора системы охлаждения двигателя I

Реле высоких оборотов вентилятора системы охлаждения двигателя II

Предохранителеи в преднем блоке

Отожмите фиксатор крышки переднего монтажного блока предохранителей, реле и плавких вставок.

Прежде чем заменить перегоревшие пре- дохранитель или плавкую вставку, выясните причину перегорания и устраните ее. При поисках неисправности просмотрите указанные в таблице цепи, которые защищает данный предохранитель или плавкая вставка. Не заменяйте предохранители перемычками или предохранителями, рассчитанными на другую силу тока, и самодельными перемыч- ками – это может привести к повреждению электрических приборов и даже к пожару.

назначение предохранителей, реле и плавких вставок в переднем монтажном блоке, расположенном в моторном отсеке

Номер предохра­нителя / плавкой вставки /реле

Предохранители / плавкие вставки

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: