Как определить рабочую и пусковую обмотки

Пусковая и рабочая обмотка однофазного двигателя: как отличить?

Для определения типа обмотки однофазного двигателя достаточно взглянуть на маркировку на шильдике и схему. Но бывают ситуации, когда любые маркировочные определения отсутствуют, что, в свою очередь, существенно усложняет задачу. К тому же вид обмотки электродвигателя, который уже ремонтировали, лучше определять самостоятельно, во избежание неприятных неожиданностей.

Что такое пусковая обмотка

Несмотря на свое название, однофазные двигатели имеют двухфазную обмотку: основную и вспомогательную, именно последняя делит электрические моторы небольшой мощности на виды. Так, встречаются бифилярные и конденсаторные электродвигатели, и если первые имеют пусковую обмотку, то вторые обладают пусковым конденсатором. И если у второго вида второстепенная обмотка все время находится в рабочем состоянии, то у первого она отключается от сети сразу после того, как мотор наберет нужный разгон. Таким образом, вспомогательная катушка включается на короткий промежуток времени.

Характеристики рабочей обмотки

Основной или рабочей обмоткой является та, которая работает постоянно, создавая магнитное поле. Как следствие, она обладает большим сечением проводника и меньшим активным сопротивлением из-за постоянной нагрузки. Однако, несмотря на всю ее значимость, она не может работать без пускового механизма, которым и является вспомогательная катушка.

Как отличить на однофазном двигателе

Однофазные двигатели оснащаются двумя типами обмотки для того, чтобы их ротор мог вращаться, поскольку только одной для этого недостаточно. Поэтому перед подключением двигателя необходимо разобраться, какой моток является основным, а какой вспомогательным. Сделать это можно несколькими способами.

По цветовой маркировке

К какому типу относится конкретный моток, можно определить по цветовой маркировке во время визуального осмотра двигателя. Как правило, красные провода относятся к рабочему типу, а вот синие – вспомогательному.

Но во всех правилах есть свои исключения, поэтому всегда необходимо обращать внимание на бирку электродвигателя, на которую наносится расшифровка всех маркировок.

Однако если двигатель уже был в ремонте или на нем отсутствует бирка, данный способ проверки является не эффективным. В первом случае во время ремонтных работ могло полностью поменяться внутреннее содержимое мотора, а во втором – нет возможности безошибочно расшифровать цветные обозначения. К тому же иногда маркировка может вообще отсутствовать. Поэтому в таких ситуациях, лучше прибегнуть к другому, более достоверному способу.

По толщине проводов

Толщина проводов, которые выходят из электромашины небольшой мощности, поможет отличить пусковую катушку от рабочей. Поскольку вспомогательная работает непродолжительное время и не испытывает серьезной нагрузки, то провода, относящиеся к ней, будут более тонкими.

Однако не всегда можно определить толщину сечения проводов невооруженным глазом, иногда разница между ними совсем незаметна человеку.

Но даже если она бросается в глаза, опираться только на это не стоит. Поэтому многие всегда измеряют сопротивление проводов.

При помощи мультиметра

Мультиметр – специальный прибор, позволяющий измерить сопротивление проводов, а также их целостность. Для этого необходимо следовать следующему алгоритму:

  1. Возьмите мультиметр и выберите нужную функцию.

  1. Снимите изоляцию с проводов двигателя, и соедините два любые из них со щупами прибора. Так происходит замер силы сопротивления между двумя проводами мотора.

  1. Если на экране прибора не появилось никаких числовых значений, то необходимо заменить один из проводов, и после этого повторить процедуру. Полученные показания будут относиться к выводам одного мотка.
  2. Подключите щупы измерительного прибора к оставшимся жилам и зафиксируйте показания.
  3. Сравните полученные результаты. Электропровода с более сильным сопротивлением будут относиться к пусковой катушке, а с более слабым – к рабочей.

После того, как замеры будут определены и станет понятно, какие электропровода к какой катушке относятся, рекомендовано промаркировать их любым удобным способом. Это позволит в дальнейшем пропускать процедуру измерения сопротивления при подключении двигателя.

Отличить, где находиться пусковая, а где рабочая обмотка однофазного мотора, можно несколькими способами. Однако наиболее действенным из них является измерение сопротивления электропроводов, отходящих из электромотора малой мощности, с помощью мультиметра.

Онлайн журнал электрика

Статьи по электроремонту и электромонтажу

  • Справочник электрика
    • Бытовые электроприборы
    • Библиотека электрика
    • Инструмент электрика
    • Квалификационные характеристики
    • Книги электрика
    • Полезные советы электрику
    • Электричество для чайников
  • Справочник электромонтажника
    • КИП и А
    • Полезная информация
    • Полезные советы
    • Пусконаладочные работы
  • Основы электротехники
    • Провода и кабели
    • Программа профессионального обучения
    • Ремонт в доме
    • Экономия электроэнергии
    • Учёт электроэнергии
    • Электрика на производстве
  • Ремонт электрооборудования
    • Трансформаторы и электрические машины
    • Уроки электротехники
    • Электрические аппараты
    • Эксплуатация электрооборудования
  • Электромонтажные работы
    • Электрические схемы
    • Электрические измерения
    • Электрическое освещение
    • Электробезопасность
    • Электроснабжение
    • Электротехнические материалы
    • Электротехнические устройства
    • Электротехнологические установки
Читайте также:
Вездеходы (снегоболотоходы): гусеничные

Как определить рабочую и пусковую обмотки

Данная публикация будет, непременно, полезна новеньким и для тех, кто любит своими руками и головой делать различные вещи, не имея простых познаний, но владея неплохой сообразительностью. Эта маленькая статейка вам в жизни очень понадобится. Знать устройство пусковой и рабочей обмоток, нужно непременно. Я бы даже сравнил это, как в математике, с таблицей умножения. Начну с того что, однофазовые движки имеют две разновидности обмоток – пусковую и рабочую. Эти обмотки отличаются и по сечению провода и по количеству витков. Осознав один раз, вы я думаю, уже это не забудете никогда.

Рабочая обмотка огромным сечением

1-ое – рабочая обмотка всегда имеет сечение провода большее, а как следует ее сопротивление будет меньше. Поглядите на фото наглядно видно, что сечение проводов различное. Обмотка с наименьшим сечением и есть пусковая. Замерять сопротивление обмоток можно и стрелочным и цифровым тестерами, также омметром. Обмотка, у которой сопротивление меньше – есть рабочая.

Наглядно показаны обмотки

А сейчас несколько примеров, с которыми вы сможете столкнуться:

Если у мотора 4 вывода, то обнаружив концы обмоток и после замера, вы сейчас просто разберетесь в этих 4 проводах, сопротивление меньше – рабочая, сопротивление больше – пусковая. Подключается все очень просто, на толстые провода подается 220в. И один кончик пусковой обмотки, на один из рабочих. На какой из их различия нет, направление вращения от этого не зависит. Так же и от того как вы вставите вилку в розетку. Вращение, будет поменяются, от подключения пусковой обмотки, а конкретно – меняя концы пусковой обмотки.

Последующий пример. Это когда движок имеет 3 вывода. Тут замеры будут смотреться последующим образом, к примеру – 10 ом, 25 ом, 15 ом. После нескольких измерений найдите кончик, от которого показания, с 2-мя другими, будут 15 ом и 10 ом. Это и будет, один из сетевых проводов. Кончик, который указывает 10 ом, это тоже сетевой и третий 15 ом будет пусковым, который подключается ко второму сетевому через конденсатор. В этом примере направление вращения, вы уже не измените, какое есть такое и будет. Тут, чтоб поменять вращение, нужно будет добираться до схемы обмотки.

Очередной пример, когда замеры могут демонстрировать 10 ом, 10 ом , 20 ом. Это тоже одина из разновидностей обмоток. Такие, шли на неких моделях стиральных машин, ну и не только лишь. В этих движках, рабочая и пусковая – однообразные обмотки ( по конструкции трехфазных обмоток). Тут различия нет, какой у вас будет рабочая, а какая пусковая. Подключение пусковой, также осуществляется через конденсатор. Рекомендую прочесть ссылки, которые установлены в статье.

Вот кратко и все, что необходимо знать вам по этому вопросу.

Как найти пусковую и рабочую обмотку однофазного двигателя

Казалось бы, что может быть проще, посмотреть на маркировку, схему и определить, а что делать если ни того ни другого нет, как найти пусковую и рабочую обмотки? В этой статье я расскажу и покажу на примере, как происходит определение назначения обмоток, если нет при этом никаких маркировочных определителей.

Визуальный осмотр

В качестве примера я рассмотрю двигатель АЕР 16УХЛ4 220В 180Вт, оставшийся от старой советской стиральной машинки, ушедшей на металлолом.

Произведя визуальный осмотр я не нашел на нем никакой бирки с информацией кроме названия. Но поковырявшись в интернете и найдя описание, я понял, что передо мной двигатель с пусковой обмоткой с релейным пуском.

Двигатель АЕР 16УХЛ4 220В 180Вт

Из самого двигателя выходят четыре провода, два из них грязно-голубого цвета, а два красно-розового. Логично предположить, что это выводы пусковой и рабочей обмоток.

Но вот какие относятся к пусковой, а какие к рабочей, совершенно непонятно, ведь бирок никаких нет.

Вывода обмоток без маркировки

Но это вовсе не проблема, сейчас я расскажу как в такой ситуации разобраться с обмотками.

Сечение проводников

Первое на что следует обратить внимание, это на толщину проводов выходящих с электродвигателя. Пара концов, которые будут тоньше, относятся к пусковой обмотке, а та, которая будет толще, к рабочей.

В моем случае провода имеют одинаковое сечение, поэтому определить «на глаз» никак не получится.

Читайте также:
Секретка на автомобиль (машину) от угона своими руками

Но если в конкретно вашем случае видна разница в толщине жил не стоит верить только диаметру, необходимо обязательно измерять сопротивление обмоток.

Зная этот факт, переходим к определению сопротивления обмоток

Измеряем сопротивление обмоток

Для этого берем мультиметр, выбираем функцию прозвонки (либо измерение сопротивления).

Мультиметр с установленной прозвонкой

Затем берем концы прибора и два любых вывода с двигателя и производим измерение

Прозвонка обмоток двигателя с помощью мультиметра

В случае того, если прибор показал единицу, то следует взять другой конец и повторить измерение.

Прозвонка обмоток неизвестного однофазного двигателя

Как мы видим при таком расположении щупов сопротивление равно 16,5 Ом, запоминаем (записываем) эти данные. Теперь цепляем щупы мультиметра на два оставшихся вывода и так же производим замер сопротивления.

Прозвонка неизвестных выводов однофазного двигателя с помощью мультиметра

У нас получилось 34,4Ом. Так же записываем и сравниваем с предыдущими замерами.

А как известно рабочая обмотка всегда имеет меньшее сопротивление, по сравнению с пусковой. Зная это мы теперь точно можем утверждать что: первая обмотка (с красно-розовыми проводами) рабочая, а вторая обмотка (с голубой изоляцией) пусковая.

Схема однофазного двигателя

Для того чтобы не искать в дальнейшем где какая обмотка маркируем их. Для этих целей я обычно использую виниловую трубку.

Согласно современному ГОСТу вывода обмоток маркируются следующим образом:

  1. U1 – U2 – рабочая обмотка.
  2. B1- B2 – пусковая обмотка.

Подписанные вывода однофазного двигателя

В нашем случае с двигателя выходило 4 провода, но попадаются двигатели, у которых производитель вывел только три.

В таком варианте поступаем следующим образом:

Замеры сопротивления производятся аналогично вышеописанным способом. Маркируем наши провода буквами A, B, C.

Измерение сопротивления обмоток мультиметром

Замеряем сопротивление между концами «A — B», потом между «B – C» и между выводами «A – C»

Измерение сопротивления обмоток мультиметром

Теперь записываем (запоминаем) наши получившиеся значения

Схема обмоток однофазного двигателя с помеченными обмотками

Из всего выше представленного делаем выводы:

А – В — рабочая обмотка

В – С — пусковая обмотка

А – С – последовательно соединенные пусковая и рабочая обмотки с суммарным сопротивлением.

Заключение

Таким образом, вы сможете легко и просто определить, где пусковая, а где рабочая обмотка в конкретно вашем двигателе у которого вообще может отсутствовать маркировка. Если материал оказался вам полезен, то оцените ее репостом в любимой вашей социальной сети. Спасибо за ваше внимание!

Как отличить пусковую и рабочую обмотку однофазного двигателя

Две обмотки нужны для того, что бы вызвать вращение ротора однофазного двигателя. Самые распространенные двигатели такого типа можно разделить на две группы: однофазные двигатели с пусковой обмоткой и двигатели с рабочим конденсатором.

У двигателей первого типа пусковая обмотка включается через конденсатор только на момент пуска и после того как двигатель развил нормальную скорость вращения, она отключается от сети. Двигатель продолжает работать с одной рабочей обмоткой. Величина конденсатора обычно указывается на табличке-шильдике двигателя и зависит от его конструктивного исполнения.

У однофазных асинхронных двигателей переменного тока с рабочим конденсатором вспомогательная обмотка включена постоянно через конденсатор. Величина рабочей емкости конденсатора определяется конструктивным исполнением двигателя.

То есть если вспомогательная обмотка однофазного двигателя пусковая, ее подключение будет происходить только на время пуска, а если вспомогательная обмотка конденсаторная, то ее подключение будет происходить через конденсатор, который остается включенным в процессе работы двигателя.

Знать устройство пусковой и рабочей обмоток однофазного двигателя надо обязательно. Пусковая и рабочие обмотки однофазных двигателей отличаются и по сечению провода и по количеству витков. Рабочая обмотка однофазного двигателя всегда имеет сечение провода большее, а следовательно ее сопротивление будет меньше.

Посмотрите на фото наглядно видно, что сечение проводов разное. Обмотка с меньшим сечением и есть пусковая. Замерять сопротивление обмоток можно и стрелочным и цифровым тестерами, а также омметром. Обмотка, у которой сопротивление меньше – есть рабочая.

Рис. 1. Рабочая и пусковая обмотки однофазного двигателя

А теперь несколько примеров, с которыми вы можете столкнуться:

Если у двигателя 4 вывода, то найдя концы обмоток и после замера, вы теперь легко разберетесь в этих четырех проводах, сопротивление меньше – рабочая, сопротивление больше – пусковая.

Подключается все просто, на толстые провода подается 220в. И один кончик пусковой обмотки, на один из рабочих. На какой из них разницы нет, направление вращения от этого не зависит. Так же и от того как вы вставите вилку в розетку. Вращение, будет изменятся, от подключения пусковой обмотки, а именно – меняя концы пусковой обмотки.

Читайте также:
Регистрация автомобиля по временной регистрации - закончилась, просрочена, продление

Следующий пример. Это когда двигатель имеет 3 вывода. Здесь замеры будут выглядеть следующим образом, например – 10 ом, 25 ом, 15 ом. После нескольких измерений найдите кончик, от которого показания, с двумя другими, будут 15 ом и 10 ом.

Это и будет, один из сетевых проводов. Кончик, который показывает 10 ом, это тоже сетевой и третий 15 ом будет пусковым, который подключается ко второму сетевому через конденсатор.

В этом примере направление вращения, вы уже не измените, какое есть такое и будет. Здесь, чтобы поменять вращение, надо будет добираться до схемы обмотки.

Еще один пример, когда замеры могут показывать 10 ом, 10 ом, 20 ом. Это тоже одна из разновидностей обмоток. Такие, шли на некоторых моделях стиральных машин, да и не только.

В этих двигателях, рабочая и пусковая – одинаковые обмотки (по конструкции трехфазных обмоток). Здесь разницы нет, какой у вас будет рабочая, а какая пусковая обмотка. Подключение пусковой обмотки однофазного двигателя, также осуществляется через конденсатор.

Что такое пусковая обмотка

Несмотря на свое название, однофазные двигатели имеют двухфазную обмотку: основную и вспомогательную, именно последняя делит электрические моторы небольшой мощности на виды. Так, встречаются бифилярные и конденсаторные электродвигатели, и если первые имеют пусковую обмотку, то вторые обладают пусковым конденсатором. И если у второго вида второстепенная обмотка все время находится в рабочем состоянии, то у первого она отключается от сети сразу после того, как мотор наберет нужный разгон. Таким образом, вспомогательная катушка включается на короткий промежуток времени.

Достоинства и недостатки

Основными плюсами являются:

  • простота конструкции;
  • повсеместная доступность однофазных сетей переменного тока 220 В при частоте 50 Гц (практически во всех районах).

К минусам можно отнести следующие обстоятельства:

  • невысокий пусковой момент двигателя;
  • низкая эффективность.

Характеристики рабочей обмотки

Основной или рабочей обмоткой является та, которая работает постоянно, создавая магнитное поле. Как следствие, она обладает большим сечением проводника и меньшим активным сопротивлением из-за постоянной нагрузки. Однако, несмотря на всю ее значимость, она не может работать без пускового механизма, которым и является вспомогательная катушка.

Принцип действия

Обмотки статора при помощи переменного тока образуют магнитные поля. Они имеют одинаковую амплитуду и частоту, но действуют в разных направлениях, поэтому статический ротор начинает вращаться.

Если в двигателе отсутствует пусковой механизм, ротор останавливается, потому что результирующий крутящий момент равен нулю. В случае, когда ротор начинает вращаться в одном направлении, соответствующий крутящий момент становится выше, когда вал двигателя продолжает вращаться в заданном направлении.

Как отличить на однофазном двигателе

Однофазные двигатели оснащаются двумя типами обмотки для того, чтобы их ротор мог вращаться, поскольку только одной для этого недостаточно. Поэтому перед подключением двигателя необходимо разобраться, какой моток является основным, а какой вспомогательным. Сделать это можно несколькими способами.

По цветовой маркировке

К какому типу относится конкретный моток, можно определить по цветовой маркировке во время визуального осмотра двигателя. Как правило, красные провода относятся к рабочему типу, а вот синие – вспомогательному.

Но во всех правилах есть свои исключения, поэтому всегда необходимо обращать внимание на бирку электродвигателя, на которую наносится расшифровка всех маркировок.

Однако если двигатель уже был в ремонте или на нем отсутствует бирка, данный способ проверки является не эффективным. В первом случае во время ремонтных работ могло полностью поменяться внутреннее содержимое мотора, а во втором – нет возможности безошибочно расшифровать цветные обозначения. К тому же иногда маркировка может вообще отсутствовать. Поэтому в таких ситуациях, лучше прибегнуть к другому, более достоверному способу.

Подписка на рассылку

Электродвигатели, используемые для комплектации бытовых приборов, в большинстве случаев относятся к группе однофазных и подразделяются на коллекторные и электрические машины с короткозамкнутым ротором.

Виды однофазных электродвигателей


Наиболее распространен последний тип моделей. В свою очередь, он разделяется на две группы:

Однофазное напряжение, подаваемое на обмотки статора с одной рабочей катушкой, создает пульсирующее, а не вращающееся магнитное поле. Поэтому ротор не способен самостоятельно начать вращение из состояния покоя и требует дополнительного начального воздействия. Его обеспечивает
пусковая обмотка асинхронного двигателя, включаемая только на время, необходимое для выхода электродвигателя на рабочие обороты, и отключаемая центробежным переключателем, установленным на валу.
Однако, для обеспечения начального «толчка» дополнительная катушка к питающей сети также подключается через конденсатор.

Читайте также:
Самоделки из бензопилы своими руками: лодочный мотор

Как найти пусковую обмотку


Для правильного подключения двигателя к сети необходимо определить назначение обмоток. Следует помнить, что рабочая катушка двигателя всегда будет иметь меньшее сопротивление, так как для ее намотки используется провод большего диаметра. Визуально различить разницу в размерах практически невозможно. Поэтому для распознавания обмоток достаточно с помощью мультиметра выполнить несколько измерений.
Самый простой вариант, когда у двигателя для подключения к сети выведены концы обеих катушек. В этом случае берется любой из четырех выводов и последовательно прозванивается с оставшимися концами для определения пар, связанных между собой. После чего просто измеряется сопротивление обмоток. Четырехвыводные двигатели имею большое преимущество, поскольку позволяют организовать реверсивное подключение.

Более сложной разновидностью является двигатель с тремя выводами.

В этом случае пусковая и рабочая обмотки двигателя изначально соединены между собой. Первым делом нужно найти вывод, который подключен к месту их соединения. Для этого определяется сопротивление между выводами 1-2; 2-3 и 1-3. Пара, у которой будут наибольшие показания прибора, соответствует концам соединенных между собой катушек. Значит, оставшийся свободный контакт является «срединной» точкой. Теперь необходимо последовательно измерить сопротивление между этим выводом и другими концами обмоток, тем самым разделив их на рабочую и пусковую. Минусом трехпроводного подключения является невозможность реверсивного использования двигателя.

Зная, как определить назначение обмоток, можно без ошибок запустить однофазный двигатель и избежать его поломки.

Механизм работы и схема включения

Практически движки этого типа являются двухфазными, но так как они подключаются к однофазной сети и в работе принимает участие лишь одна обмотка (2-ая служит только для запуска), то их принято называть однофазными.

Сходу после включения к сети рабочей обмотке электромотора, в короткозамкнутом роторе создается пульсирующее магнитное поле, чего очевидно недостаточно для его вращения. Ротор нужно «толкнуть» – грубо говоря крутануть, чтоб поле стало вращающимся. Сделать это можно просто рукою, при этом в какую сторону мы «толкнем», в том направлении электрический двигатель и будет вращаться.

Принципиально! Применять руку в качестве пускового устройства не стоит, так как это чрезвычайно небезопасно даже при относительно маломощном моторе. Если очень охото поэкспериментировать, в качестве подопытного лучше взять совершенно слабые моторы, сообщим, от старых проигрывателей, не запамятывая про то, что они рассчитаны на 127 В.

Для исходного толчка предназначена 2-ая обмотка – пусковая. Чтоб запустить движок, довольно на эту обмотку краткосрочно подать то же напряжение, что и на рабочую, но через фазосдвигающий конденсатор. После того, как движок запустится, пусковую обмотку сразу отключают. При другом варианте она стремительно перегреется и сгорит.

Есть и еще одна схема, в какой пусковая обмотка подключена повсевременно и после реализации собственной функции пусковой, преобразуется во вторую рабочую.

Как определить рабочую и пусковую обмотки однофазного электродвигателя

Здравствуйте, уважаемые читатели и гости сайта «Заметки электрика».

Меня часто спрашивают о том, как можно отличить рабочую обмотку от пусковой в однофазных двигателях, когда на проводах отсутствует маркировка.

Каждый раз приходится подробно разъяснять, что и как. И вот сегодня я решил написать об этом целую статью.

В качестве примера возьму однофазный электродвигатель КД-25-У4, 220 (В), 1350 (об/мин.):

Вот его внешний вид.

Как видите, маркировка (цветовая и цифровая) на проводах отсутствует. На бирке двигателя можно увидеть, какую маркировку должны иметь провода:

В первую очередь я Вам покажу, как определить рабочую и пусковую обмотки однофазного двигателя, а затем соберу схему его включения. Но об этом будет следующая статья. Перед тем как приступить к чтению данной статьи рекомендую Вам прочитать: подключение однофазного конденсаторного двигателя.

1. Сечение проводов

Визуально смотрим сечение проводников. Пара проводов, у которых сечение больше, относятся к рабочей обмотке. И наоборот. Провода, у которых сечение меньше, относятся к пусковой.

Зная основы электротехники, можно с уверенностью сказать: чем больше сечение проводов, тем меньше их сопротивление, и наоборот, чем меньше сечение проводов, тем больше их сопротивление.

В моем примере разница в сечении проводов не видна, т.к. они тонкие и на глаз их отличить не возможно.

2. Измерение омического сопротивления обмоток

Читайте также:
Регулировка развал схождение колес на ВАЗ 2107

Даже если разницу в сечении проводов видно не вооруженным глазом, то я Вам все равно рекомендую измерять величину сопротивления обмоток. Таким образом, мы заодно и проверим их целостность.

Для этого воспользуемся цифровым мультиметром М890D. Сейчас я не буду рассказывать Вам о том, как пользоваться мультиметром, об этом читайте здесь:

Снимаем изоляцию с проводов.

Затем берем щупы мультиметра и производим замер сопротивления между двух любых проводов.

Если на дисплее нет показаний, то значит нужно взять другой провод и снова произвести замер. Теперь измеренное значение сопротивления составляет 300 (Ом).

Это мы нашли выводы одной обмотки. Теперь подключаем щупы мультиметра на оставшуюся пару проводов и измеряем вторую обмотку. Получилось 129 (Ом).

Делаем вывод: первая обмотка — пусковая, вторая — рабочая.

Чтобы в дальнейшем не запутаться в проводах при подключении двигателя, подготовим бирочки («кембрики») для маркировки. Обычно, в качестве бирок я использую, либо изоляционную трубку ПВХ, либо силиконовую трубку (Silicone Rubber) необходимого мне диаметра. В этом примере я применил силиконовую трубку диаметром 3 (мм).

Пусковая и рабочая обмотка однофазного двигателя: как отличить

Механизм работы и схема включения

Практически движки этого типа являются двухфазными, но так как они подключаются к однофазной сети и в работе принимает участие лишь одна обмотка (2-ая служит только для запуска), то их принято называть однофазными.

Сходу после включения к сети рабочей обмотке электромотора, в короткозамкнутом роторе создается пульсирующее магнитное поле, чего очевидно недостаточно для его вращения. Ротор нужно «толкнуть» – грубо говоря крутануть, чтоб поле стало вращающимся. Сделать это можно просто рукою, при этом в какую сторону мы «толкнем», в том направлении электрический двигатель и будет вращаться.

Принципиально! Применять руку в качестве пускового устройства не стоит, так как это чрезвычайно небезопасно даже при относительно маломощном моторе. Если очень охото поэкспериментировать, в качестве подопытного лучше взять совершенно слабые моторы, сообщим, от старых проигрывателей, не запамятывая про то, что они рассчитаны на 127 В.

Для исходного толчка предназначена 2-ая обмотка – пусковая. Чтоб запустить движок, довольно на эту обмотку краткосрочно подать то же напряжение, что и на рабочую, но через фазосдвигающий конденсатор. После того, как движок запустится, пусковую обмотку сразу отключают. При другом варианте она стремительно перегреется и сгорит.

Есть и еще одна схема, в какой пусковая обмотка подключена повсевременно и после реализации собственной функции пусковой, преобразуется во вторую рабочую.

С чего обязательно следует начинать подключение двигателя: 2 важных момента, проверенные временем

Перед первым включением любого электродвигателя необходимо уточнить его устройство: конструкцию статора и ротора, состояние подшипников.

На собственном и чужом опыте могу заверить, что проще раскрутить несколько гаек, осмотреть внутреннюю конструкцию, выявить дефекты на начальном этапе и устранить их, чем после запуска в непродолжительную работу заниматься сложным ремонтом, который можно было предотвратить.

Важное предупреждение

Начинающие электрики довольно часто сами создают неисправности двигателя, нарушая технологию его разборки, работая обычным молотком: разбивают грани вала.

Для сохранения структуры деталей без их повреждения необходимо использовать специальный съемник подшипников электродвигателя.

В самом крайнем случае, когда его нет, удары молотком наносят через толстые пластины из мягкого металла (медь, алюминий) или плотную сухую древесину (яблоня, груша, дуб).

Как состояние подшипников влияет на работу двигателя

Любой асинхронный электродвигатель (АД) имеет ротор с короткозамкнутыми обмотками. В них наводится ток, создающий магнитный поток, взаимодействующий с вращающимся магнитным полем статора, которое и является его источником движения.

Ротор внутри корпуса крепится на подшипниках. Их состояние сильно влияет на качество вращения. Они призваны обеспечить легкое скольжение вала без люфтов и биений. Любые нарушения недопустимы.

Дело в том, что обмотку статора можно рассматривать как обыкновенный электромагнит. Если у ротора разбиты подшипники, то он под действием магнитного поля станет притягиваться, приближаясь к статорной обмотке.

Зазор между вращающейся и стационарной частями очень маленький. Поэтому касания или биения ротора могут задевать, царапать, деформировать статорные обмотки, безвозвратно повреждая их. Ремонт потребует полной перемотки статора, а это весьма сложная работа.

Обязательно разбирайте электродвигатель перед его подключением, тщательно осматривайте всю его внутреннюю конструкцию.

Что надо учитывать в конструкции статорных обмоток и как их подготовить

Домашнему мастеру чаще всего попадают электродвигатели, которые уже где-то поработали, а, возможно, и прошли реконструкцию или перемотку. Никто об этом обычно не заявляет, на шильдиках и бирках информацию не меняют, оставляют прежней. Поэтому рекомендую визуально осмотреть их внутренности.

Читайте также:
Как подключить сабвуфер мистери активный своими руками

Статорные катушки у асинхронных двигателей для питания от однофазной и трехфазной сети отличаются количеством обмоток и конструкцией.

Трехфазный электродвигатель имеет три абсолютно одинаковые обмотки, разнесенные по направлению вращения ротора на 120 угловых градусов. Они выполнены из одного провода с одинаковым числом витков.

Все они имеют равное активное и индуктивное сопротивление, занимают одинаковое число пазов внутри статора.

Находим пусковую и рабочую обмотки

А сейчас перейдем к главной теме статьи – попытаемся разобраться в обмотках. Тут, как было увидено выше, могут быть два варианта – три провода и 4 провода.

Три провода

Итак, перед нами движок, из которого выходит три провода. Обмоток у этого мотора тоже две, просто пусковая и рабочая обмотки соединены меж собой снутри электромотора.

Для начала нам необходимо найти провод, присоединенный к точке соединения катушек. На схеме выше он обозначен буковкой «В». С этой целью с помощью омметра (мультиметра, включенного в режим измерения небольших сопротивлений) вызваниваем все обмотки попарно: А-В, А-С, В-С. Находим пару с наибольшим сопротивлением. Данная пара (на схеме выше она обозначена как А-С) – концы рабочей и пусковой катушек. Оставшийся 3-ий провод – точка соединения.

Сейчас осталось найти какая катушка рабочая, какая пусковая. С этой целью измеряем сопротивления меж средней точкой и 2-мя другими проводами. На схеме выше: В-А и В-С. Обмотка,которая имеет большее сопротивление, будет пусковой, наименьшее – рабочей

На заметку. Величины сопротивлений мы указывать не будем – они зависят от мощности мотора и могут очень колебаться, но при любом варианте сопротивление пусковой обмотки больше.

Четырехпроводная

Если наш электрический двигатель имеет 4 вывода, следовательно, обмотки меж собой не соединены и их заключения выходят из мотора раздельно.

Как определить мощность электродвигателя?

При отсутствии техпаспорта или бирки на двигателе возникает вопрос: как узнать мощность электродвигателя без таблички или технической документации? Самые распространенные и быстрые способы, о которых мы расскажем в статье:

  • По диаметру и длине вала
  • По габаритам и крепежным размерам
  • По сопротивлению обмоток
  • По току холостого хода
  • По току в клеммной коробке
  • С помощью индукционного счетчика (для бытовых электродвигателей)

Определение мощности двигателя по диаметру вала и длине

Простейшие способы определения мощности и марки двигателя – габаритные размеры – вал или крепежные отверстия. В таблице указаны длины и диаметры валов (D1) и длина (L1) для каждой модели асинхронного промышленного трехфазного мотора. Перейти к подробным габаритным размерам электродвигателей АИР

Р, кВт 3000 об. Мин 1500 об. мин 1000 об. мин 750 об. мин
D1, мм L1, мм D1, мм L1, мм D1, мм L1, мм D1, мм L1, мм
1,5 22 50 22 50 24 50 28 60
2,2 24 28 60 32 80
3 24 32 80
4 28 60 28 60 38
5,5 32 80 38
7,5 32 80 38 48 110
11 38 48 110
15 42 110 48 110 55
18,5 55 60 140
22 48 55 60 140
30 65
37 55 60 140 65 75
45 75 75
55 65 80 170
75 65 140 75 80 170
90 90
110 70 80 170 90
132 100 210
160 75 90 100 210
200
250 85 170 100 210
315

Проверить мощность по габаритам и крепежным размерам

Таблица подбора мощности двигателя по крепежным отверстиям на лапах (L10 и B10):

Р, кВт 3000 об. 1500 об. 1000 об. 750 об.
L10, мм B10, мм L10, мм B10, мм L10, мм B10, мм L10, мм B10, мм
1,5 100 125 100 125 125 140 140 160
2,2 125 140 140 160 190
3 125 140 112 160 190
4 112 160 140 216
5,5 140 190 216 178
7,5 190 216 178 254
11 178 216 178 254 210
15 254 254 210 241 279
18,5 210 210 241 279 267 318
22 203 279 203 279 267 318 310
30 241 241 310 311 356
37 267 318 267 318 311 356 406
45 310 310 406 349
75 311 406 311 406 368 457 419 457
90 349 349 419 406 508
110 368 457 368 457 406 508 547
132 419 419 457 610 355
160 406 508 406 508 610 355
200 457 457 560 610
250 610 355 610 355 560 610
315 630/800 686/630
Читайте также:
Выбираем передние стойки, пружины и опоры с подшипниками

Для фланцевых электродвигателей

Таблица для подбора мощности электродвигателя по диаметру фланца (D20) и диаметру крепежных отверстий фланца (D22)

P, кВт 3000 об. 1500 об. 1000 об. 750 об.
D20, мм D22, мм D20, мм D22, мм D20, мм D22, мм D20, мм D22, мм
1,5 165 11 165 11 215 14 215 14
2,2 215 14 265
3 215 14 365
4 265 300 19
5,5 265 300 19
7,5 265 300 19
11 300 19
15 350
18,5 350 400
22 350 350 400
30 500
37 400 400 500
45 400
55 500 500 550 24
75 500 550 24
90 500 28
110 550 24 550 24 28
132 550 680
160 550 28 28 680
200 550 740 24
250 680 680 740 24
315 680

Расчет по току

Электродвигатель подключается к сети и замеряется напряжение. С помощью амперметра поочередно замеряем ток в цепи каждой из обмоток статора. Сумму потребляемых токов умножаем на фиксированное напряжение. Полученное число – мощность электродвигателя в ваттах.

Как проверить мощность электродвигателя по току холостого хода

Проверить мощность по току холостого хода можно с помощью таблицы.

Р двигателя, кВт Ток холостого хода (% от номинального)
Обороты двигателя, об/мин
600 750 1000 1500 3000
0,75-1,5 85 80 75 70 50
1,5-5,5 80 75 70 65 45
5,5-11 75 70 65 60 40
15-22,5 70 65 60 55 30
22,5-55 65 60 55 50 20
55-110 55 50 45 40 20

Расчет по сопротивлению обмоток

Соединение звездой.

Измеряем сопротивление между выводами (1-2, 2-3, 3-1). Делим на 2 – получаем сопротивление одной обмотки. Мощность одной обмотки расчитывается так: P=(220V*220V)/R. Цифру умножаем на 3 (количество обмоток) – получаем мощность двигателя.

Соединение треугольником.

Измеряем сопротивление в начале и в конце каждой обмотки. По той же формуле определяем мощность и умножаем на 6.

Статья о схемах подключения электродвигателей к сети

Если нет возможности определить мощность двигателя самостоятельно

Мы все же рекомендуем доверить определение мощности электродвигателя или подбор профессионалам. Это существенно сэкономит Ваше время и позволит избежать досадных ошибок в эксплуатации оборудования.

Сервисный – профессиональный подбор двигателя, дефектовка, капитальный и текущий ремонт и перемотка электродвигателей любых типов и любой мощности. Доверяйте профессионалам.

КАК СДЕЛАТЬ ВИНТ И КРЫЛЬЯ АВТОЖИРА

ВИНТ И КРЫЛЬЯ АВТОЖИРА Можно без преувеличения сказать, что главное в планере-автожире — это несущий винт. От правильности его профиля, от веса, точности центровки и прочности зависят полетные качества автожира. Правда, безмоторный аппарат на буксире за автомобилем поднимается всего на 20— 30 м. Но и полет на такой высоте требует обязательного соблюдения всех ранее высказанных условий.

Лопасть автожира (рис. 1) состоит из главного, воспринимающего все нагрузки элемента — лонжерона, нервюр (рис. 2), промежутки между которыми заполнены пластинами из пенопласта, и задней кромки, изготовляемой из прямослойной сосновой рейки. Все эти части лопасти склеиваются синтетической смолой и после надлежащего профилирования оклеиваются стеклотканью для придания дополнительной прочности и герметичности. Материалы для лопасти: авиационная фанера толщиной 1 мм, стеклоткань толщиной 0,3 и 0,1 мм, эпоксидная смола ЭД-5 и пенопласт ПС-1.

Смола пластифицируется дибутилфталатом в количестве 10—15%. Отвердителем служит полиэтилен полиамин (10%). Изготовление лонжерона, сборка лопастей и их последующая обработка производятся на стапеле, который должен быть достаточно жестким и иметь прямолинейную горизонтальную поверхность, а также одну из вертикальных кромок (их прямолинейность обеспечивается строжкой под линейку типа лекальной, не менее 1 м длиной). Стапель (рис. 3) делают из сухих досок. К вертикальной продольной кромке (прямолинейность которой обеспечена) на время сборки и склейки лонжерона крепятся винтами металлические установочные пластинки на расстоянии 400—500 мм друг от друга. Верхний край их должен возвышаться над горизонтальной поверхностью на 22— 22,5 мм.

Читайте также:
Тюнинг УАЗ Хантер под Гелендваген

Для каждой лопасти автожир следует заготовить 17 полос фанеры, раскроенных по чертежу лонжерона наружным слоем вдоль, с припусками на обработку по 2—4 мм на сторону. Поскольку размеры листа фанеры 1500 мм, в каждом слое неизбежна склейка полос на ус не менее чем 1 : 10, а стыки в одном слое должны отстоять от стыков в другом, следующем за ним на расстоянии 100 мм. Отрезки фанеры располагаются так, что первые стыки нижнего и верхнего слоев отстоят от комлевого торца лонжерона на 1500 мм, второго и предпоследнего слоев — на 1400 мм и т. д., а стык среднего слоя будет на расстоянии 700 мм от торца комлевой части лопасти.

Соответственно будут распределяться вдоль лонжерона вторые и третьи стыки заготовляемых полос. Кроме того, нужно иметь 16 полос стеклоткани толщиной 0,3 мм и размером 95X3120 мм каждая. Предварительно они должны подвергнуться обработке для удаления замасливателя. Склеивать лопасти нужно в сухом теплом помещении при температуре 18—20° С.

ИЗГОТОВЛЕНИЕ ЛОНЖЕРОНА АВТОЖИРА Перед сборкой заготовок стапель выстилается калькой; чтобы они не слипались. Затем укладывается и выравнивается относительно установочных пластин первый слой фанеры. Его прикрепляют к стапелю тонкими и короткими гвоздями (4— 5 мм), которые вбивают у комля и у конца лопасти, а также по одному с каждой стороны стыков для предотвращения смещения отрезков фанеры по смоле и стеклоткани в процессе сборки. Поскольку они останутся в слоях, их вколачивают вразброс.

Гвозди вбивают указанным порядком и для закрепления всех последующих слоев. Они должны быть из достаточно мягкого металла, чтобы не повреждать режущие кромки инструмента, употребляемого для дальнейшей обработки лонжерона. Слои фанеры обильно смачивают при помощи ролика или кисти смолой ЭД-5. Затем последовательно накладывают на фанеру полосу стеклоткани, которую разглаживают рукой и деревянной гладилкой, пока на ее поверхности не покажется смола. После этого на ткань кладут слой фанеры, у которого сначала смазывают смолой ту сторону, которая ляжет на стеклоткань. Набранный таким образом лонжерон покрывают калькой, укладывают на него рейку размером 3100X90X40 мм.

Между рейкой и стапелем струбцинами, расположенными на расстоянии 250 мм друг от друга, по всей длине рейки производят обжатие набранного пакета, пока его толщина не сравняется с верхними кромками установочных пластин. Излишки смолы надо удалить до ее затвердения. * – – ш — – Заготовка лонжерона снимается со стапеля через 2—3 суток и обрабатывается до ширины 70 мм в профильной части, 90 мм — в комлевой, а также длины между торцами — 3100 мм. Необходимое требование, которое следует соблюсти на этом этапе, — обеспечение прямолинейности поверхности лонжерона, образующей в процессе дальнейшего профилирования переднюю кромку лопасти.

Поверхность, к которой будут приклеиваться нервюры и заполнитель из пенопласта, должна быть также достаточно прямолинейной. Обрабатывать ее следует рубанком и обязательно с ножом из твердых сплавов или в крайнем случае, драчевыми напильниками. Все четыре продольные поверхности заготовки лонжерона должны быть взаимно перпендикулярными.

ПРЕДВАРИТЕЛЬНОЕ ПРОФИЛИРОВАНИЕ Разметку заготовки лонжерона производят так. Ее кладут на стапель и на концевом торце, передней и задней плоскостях наносят линии, отстоящие от поверхности стапеля на расстоянии 8 мм. На концевом торце, кроме того, вычерчивают с помощью шаблона (рис. 4) полный профиль лопасти в масштабе 1 : 1. Особой точности при изготовлении этого вспомогательного шаблона не требуется. С наружной стороны шаблона наносят линию хорды и на ней у носка профиля и в точке на расстоянии 65 мм от него сверлят два отверстия 6 мм

Глядя сквозь отверстия, совмещают линию хорды шаблона с линией, проведенной на концевом торце лонжерона, чтобы нанести на нем линию, определяющую границу профилирования. Во избежание сдвигов шаблон крепится. К торцу тонкими гвоздями, под которые в нем сверлятся произвольно расположенные по их диаметру отверстия. Обработку лонжеронов по профилю производят простым рубанком (грубая) и плоским драчевым напильником.

В продольном направлении ее контролируют линейкой. Завершив обработку, приклеивают нервюры к задней поверхности лонжерона. Точность их установки обеспечивается тем, что на них в ходе изготовления наносят линию хорды, которая совмещается с линией хорды, нанесенной на задней плоскости заготовки лонжерона, а также визуальной проверкой прямолинейности их расположения относительно вспомогательного шаблона.

Его снова крепят для этой цели к концевому торцу. Нервюры располагают на расстоянии 250 мм друг от друга, причем первая выставляется в самом начале профиля лонжерона или на расстоянии 650 мм от торца комлевой его части.

Читайте также:
Схема электропроводки УАЗ Хантер (31519), инструкция по замене проводки своими руками, фото

Рис- 1. Сборочный чертеж лопасти автожира: 1 — лонжерон (фанера, склеенная со стеклотканью); 2 — накладна (дуб или ясень); 3 — задняя кромка (сосна или липа>; 4 — планка (сосна или липа); 5 — заполнитель (пенопласт); 6 — обшивка (2 слоя стеклоткани толщиной 0,1 мм); 7 — триммер (дюралюминий марки Д-16М толщ. 1 мм, 2 шт.); 8 — нервюра (фанера толщ- 2 мм, слой вдоль).

Автожир своими руками: чертежи, описание. Самодельные автожиры

Для того чтобы начать собирать что-либо своими руками, необходимо разобраться с основами. Что представляет собой автожир? Это летательный аппарат, который отличается сверхлегкостью. Он является винтокрылой воздушной моделью, которая при полете опирается на несущую поверхность, свободно вращающегося в режиме авторотации несущего винта.

Автожир: характеристики

Данное изобретение принадлежит испанскому инженеру Хуану де ла Сиерва. Сконструирован этот летательный аппарат был в 1919 году. Стоит сказать, что в то время все инженеры пытались построить вертолет, но вышло именно это. Конечно, конструктор не решил избавиться от своего проекта, а в 1923 году выпустил первый в мире автожир, который мог летать за счет эффекта авторотации. Инженер даже создал собственную фирму, которая занималась производством этих аппаратов. Так продолжалось до тех пор, пока не были изобретены современные вертолеты. В этот момент автожиры утратили свою актуальность практически полностью.

Автожир своими руками

Будучи когда-то основным летательным аппаратом, сегодня автожир превратился в пережиток истории, который можно собрать своими руками у себя дома. Стоит сказать, что это очень даже неплохой вариант для тех людей, кто очень хочет “научиться летать”.

Чтобы сконструировать этот летательный аппарат, нет необходимости покупать дорогостоящие детали. К тому же, для его сборки не понадобится специальное оборудование, большое помещение и т. д. Собрать его можно даже в квартире, если в комнате достаточно места и соседи не против. Хотя небольшое число элементов автожира все же будет нуждаться в обработке на токарном станке.

В остальном же, сборка автожира своими руками – это довольно простой процесс.

Рекомендации

Несмотря на то, что аппарат довольно прост, существует несколько видов этой конструкции. Однако, для тех, кто решился создавать его самостоятельно и впервые, рекомендуется начать с такой модели как автожир-планер.

Недостатком этой модели станет то, что для его подъема в воздух понадобится машина и трос, длиной около 50 метров или больше, который можно будет закрепить на автомобиле. Тут необходимо понимать, что высота полета на автожире будет ограничена длиной этого элемента. После того, как такой планер будет поднят в воздух, у пилота должна будет быть возможность сбросить трос.

После отсоединения от автомобиля летательный аппарат начнет медленно планировать вниз под углом примерно в 15 градусов. Это необходимый процесс, так как он позволит пилоту выработать все необходимые навыки пилотирования, прежде чем отправиться в настоящий, свободный полет.

Основные геометрические параметры автожира, имеющего шасси с носовым колесом

Для того, чтобы перейти к настоящему полету, к автожиру своими руками необходимо добавить еще одну деталь – двигатель с толкающим винтом. Максимальная скорость аппарата с таким типом двигателя составит около 150 км/ч, а максимальная высота увеличится до нескольких километров.

Основа летательного аппарата

Итак, изготовление автожира своими руками необходимо начинать с основы. Ключевыми деталями этого устройства будут три дюралюминиевых силовых элемента. Первые две детали – это килевая и осевая балки, а третий – это мачта.

К килевой балке спереди необходимо будет добавить управляемое носовое колесо. Для этих целей можно использовать колесо от спортивного микроавтомобиля. Важно отметить, что эта деталь должна быть оснащена тормозным устройством.

К концам осевой балки с обеих сторон также нужно прикрепить колеса. Для этого вполне подойдут небольшие колеса от мотороллера. Вместо колес можно монтировать поплавки, если планируется использовать автожир как средство для полета на буксире за катером.

Кроме этого, к концу килевой балки нужно добавить еще один элемент – ферму. Фермой называют треугольную конструкцию, которая складывается из дюралюминиевых уголков, а после усиливается прямоугольными листовыми накладками.

Можно добавить, что цена автожира довольно высока, а его изготовление своими руками не только реально, но и помогает хорошо сэкономить.

Элементы килевой балки

Предназначение крепления фермы на килевую балку – это соединение аппарата и автомобиля посредством троса. То есть он надевается именно на эту деталь, которая должна быть обустроена так, чтобы пилот, когда дернет за нее, мог сразу же освободиться от сцепления с тросом. Кроме этого, эта деталь служит платформой для размещения на ней простейших летательных приборов – индикатора воздушной скорости, а также индикатора бокового сноса.

Читайте также:
Секретный метод - как убрать переддув турбины

Под этим элементом располагается педальный узел с тросовой проводкой к рулю управления средством.

Самодельный автожир также должен быть оснащен оперением, располагающимся на противоположном конце килевой балки, то есть сзади. Под оперением понимают горизонтальный стабилизатор и вертикальный, который выражен через киль с рулем управления.

Последняя хвостовая деталь – это предохранительное колесо.

Рама для автожира

Как говорилось ранее, рама самодельного автожира состоит из трех элементов – килевой и осевой балки, а также из мачты. Изготавливаются эти детали из дюралюминиевой трубы, с сечением 50х50 мм, а толщина стенок должна быть 3 мм. Обычно такие трубы используются в качестве основы для окон, дверей, витрин магазинов и т.д.

Если не хочется использовать этот вариант, можно сконструировать автожир своими руками при помощи коробчатых балок из дюралюминиевых уголков, которые соединяются при помощи аргонодуговой сварки. Лучшим вариантом материала считается Д16Т.

При установке разметки для сверления отверстий необходимо следить, чтобы сверло только коснулось внутренней стенки, но не повредило ее. Если говорить о диаметре требуемого сверла, то он должен быть таким, чтобы модель болта Мб входила в отверстие как можно плотнее. Проводить все работы лучше всего электрической дрелью. Использовать ручной вариант здесь неуместно.

Сборка основы

Прежде чем приступить к сборке основания, лучше всего составить чертеж автожира. При его составлении и последующем соединении основных деталей необходимо учитывать, что мачта должна быть немного отклонена назад. Для того, чтобы добиться этого эффекта, перед установкой у нее немного подпиливается основание. Это необходимо сделать для того, чтобы лопасти несущего винта имели угол атаки в 9 градусов, когда автожир просто стоит на земле.

Этот момент очень важен, так как обеспечение нужного угла создаст необходимую подъемную силу даже при небольшой скорости буксировки аппарата.

Расположение осевой балки – поперек килевой. Крепление осуществляется также к килевой балке при помощи четырех болтов Мб, а для большей надежности они должны быть снабжены законтренными разрезными гайками. Кроме этого, для увеличения жесткости автожира балки соединяются между собой четырьмя раскосами из стального уголка.

Спинка, сиденье и шасси

Для того, чтобы прикрепить раму к основе, необходимо использовать два дюралюминиевых уголка 25х25 мм спереди, прикрепив их к килевой балке, а сзади крепить к мачте при помощи кронштейна из стального уголка 30х30 мм. Спинка привинчивается к раме сиденья и к мачте.

На эту деталь также надеваются кольца, которые вырезаются из резиновой камеры колеса. Чаще всего для этих целей используется камера колеса грузового транспорта. Сверху на эти кольца накладывается поролоновая подушка, которая привязывается тесемками и обшивается прочной тканью. На спинку лучше всего натянуть чехол, который будет выполнен из той же ткани, что и сиденье.

Если говорить о шасси, то передняя стойка должна иметь вид вилки, которая выполнена из листовой стали, а также иметь колесо от карта, поворачивающееся вокруг вертикальной оси.

Ротор автожира и цена

Очень важным требованием для стабильной работы летательного аппарата является плавная работа ротора. Это очень важно, так как сбой в работе этой детали вызовет тряску всей машины, что сильно повлияет на прочность всей конструкции, будет мешать стабильной работе самого же ротора, а также нарушать регулировку деталей. Чтобы избежать всех этих неприятностей, очень важно правильно сбалансировать этот элемент.

Первый способ балансировки заключается в том, что элемент обрабатывается целиком, как обычный винт. Для этого необходимо очень жестко закрепить лопасти на втулке.

Второй способ – это балансировка каждой лопасти по отдельности. В таком случае необходимо добиться одинакового веса от каждой лопасти, а также достичь того, чтобы центр тяжести каждого элемента находился на одинаковом расстоянии от корня.

Цена автожира, изготовленного на заводе, начинается от 400 тысяч рублей и доходит до 5 миллионов рублей.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: